Description: Value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
zrhval2.m | ⊢ · = ( .g ‘ 𝑅 ) | ||
zrhval2.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
Assertion | zrhmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ 𝑁 ) = ( 𝑁 · 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
2 | zrhval2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
3 | zrhval2.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
4 | 1 2 3 | zrhval2 | ⊢ ( 𝑅 ∈ Ring → 𝐿 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
5 | 4 | fveq1d | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 𝑁 ) = ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ‘ 𝑁 ) ) |
6 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 · 1 ) = ( 𝑁 · 1 ) ) | |
7 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | |
8 | ovex | ⊢ ( 𝑁 · 1 ) ∈ V | |
9 | 6 7 8 | fvmpt | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ‘ 𝑁 ) = ( 𝑁 · 1 ) ) |
10 | 5 9 | sylan9eq | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ 𝑁 ) = ( 𝑁 · 1 ) ) |