Metamath Proof Explorer


Theorem zrhmulg

Description: Value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses zrhval.l 𝐿 = ( ℤRHom ‘ 𝑅 )
zrhval2.m · = ( .g𝑅 )
zrhval2.1 1 = ( 1r𝑅 )
Assertion zrhmulg ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿𝑁 ) = ( 𝑁 · 1 ) )

Proof

Step Hyp Ref Expression
1 zrhval.l 𝐿 = ( ℤRHom ‘ 𝑅 )
2 zrhval2.m · = ( .g𝑅 )
3 zrhval2.1 1 = ( 1r𝑅 )
4 1 2 3 zrhval2 ( 𝑅 ∈ Ring → 𝐿 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) )
5 4 fveq1d ( 𝑅 ∈ Ring → ( 𝐿𝑁 ) = ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ‘ 𝑁 ) )
6 oveq1 ( 𝑛 = 𝑁 → ( 𝑛 · 1 ) = ( 𝑁 · 1 ) )
7 eqid ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) )
8 ovex ( 𝑁 · 1 ) ∈ V
9 6 7 8 fvmpt ( 𝑁 ∈ ℤ → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ‘ 𝑁 ) = ( 𝑁 · 1 ) )
10 5 9 sylan9eq ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿𝑁 ) = ( 𝑁 · 1 ) )