Step |
Hyp |
Ref |
Expression |
1 |
|
zrhpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
zrhpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
zrhpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
|
zrhpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ℤring ) = ( Base ‘ ℤring ) ) |
6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ℤring ) ∧ 𝑦 ∈ ( Base ‘ ℤring ) ) ) → ( 𝑥 ( +g ‘ ℤring ) 𝑦 ) = ( 𝑥 ( +g ‘ ℤring ) 𝑦 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ℤring ) ∧ 𝑦 ∈ ( Base ‘ ℤring ) ) ) → ( 𝑥 ( .r ‘ ℤring ) 𝑦 ) = ( 𝑥 ( .r ‘ ℤring ) 𝑦 ) ) |
8 |
5 1 5 2 6 3 7 4
|
rhmpropd |
⊢ ( 𝜑 → ( ℤring RingHom 𝐾 ) = ( ℤring RingHom 𝐿 ) ) |
9 |
8
|
unieqd |
⊢ ( 𝜑 → ∪ ( ℤring RingHom 𝐾 ) = ∪ ( ℤring RingHom 𝐿 ) ) |
10 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
11 |
10
|
zrhval |
⊢ ( ℤRHom ‘ 𝐾 ) = ∪ ( ℤring RingHom 𝐾 ) |
12 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐿 ) = ( ℤRHom ‘ 𝐿 ) |
13 |
12
|
zrhval |
⊢ ( ℤRHom ‘ 𝐿 ) = ∪ ( ℤring RingHom 𝐿 ) |
14 |
9 11 13
|
3eqtr4g |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐿 ) ) |