Step |
Hyp |
Ref |
Expression |
1 |
|
zrhpsgnelbas.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
zrhpsgnelbas.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
3 |
|
zrhpsgnelbas.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
4 |
1 2
|
psgnran |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
6 |
|
elpri |
⊢ ( ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } → ( ( 𝑆 ‘ 𝑄 ) = 1 ∨ ( 𝑆 ‘ 𝑄 ) = - 1 ) ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
8 |
3 7
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
9 7
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
11 |
8 10
|
eqeltrd |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
13 |
|
fveq2 |
⊢ ( ( 𝑆 ‘ 𝑄 ) = 1 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) = ( 𝑌 ‘ 1 ) ) |
14 |
13
|
eleq1d |
⊢ ( ( 𝑆 ‘ 𝑄 ) = 1 → ( ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ↔ ( 𝑌 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) ) |
15 |
12 14
|
syl5ibr |
⊢ ( ( 𝑆 ‘ 𝑄 ) = 1 → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
16 |
|
neg1z |
⊢ - 1 ∈ ℤ |
17 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
18 |
3 17 7
|
zrhmulg |
⊢ ( ( 𝑅 ∈ Ring ∧ - 1 ∈ ℤ ) → ( 𝑌 ‘ - 1 ) = ( - 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
19 |
16 18
|
mpan2 |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ - 1 ) = ( - 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
20 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
21 |
16
|
a1i |
⊢ ( 𝑅 ∈ Ring → - 1 ∈ ℤ ) |
22 |
9 17 20 21 10
|
mulgcld |
⊢ ( 𝑅 ∈ Ring → ( - 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
19 22
|
eqeltrd |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ - 1 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ - 1 ) ∈ ( Base ‘ 𝑅 ) ) |
25 |
|
fveq2 |
⊢ ( ( 𝑆 ‘ 𝑄 ) = - 1 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) = ( 𝑌 ‘ - 1 ) ) |
26 |
25
|
eleq1d |
⊢ ( ( 𝑆 ‘ 𝑄 ) = - 1 → ( ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ↔ ( 𝑌 ‘ - 1 ) ∈ ( Base ‘ 𝑅 ) ) ) |
27 |
24 26
|
syl5ibr |
⊢ ( ( 𝑆 ‘ 𝑄 ) = - 1 → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
28 |
15 27
|
jaoi |
⊢ ( ( ( 𝑆 ‘ 𝑄 ) = 1 ∨ ( 𝑆 ‘ 𝑄 ) = - 1 ) → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
29 |
6 28
|
syl |
⊢ ( ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
30 |
5 29
|
mpcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) |