Step |
Hyp |
Ref |
Expression |
1 |
|
zrhpsgnevpm.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
2 |
|
zrhpsgnevpm.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
3 |
|
zrhpsgnevpm.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
5 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
6 |
4 2 5
|
psgnghm2 |
⊢ ( 𝑁 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
7 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
9 |
7 8
|
ghmf |
⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
10 |
6 9
|
syl |
⊢ ( 𝑁 ∈ Fin → 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
12 |
4 7
|
evpmss |
⊢ ( pmEven ‘ 𝑁 ) ⊆ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
13 |
12
|
sseli |
⊢ ( 𝐹 ∈ ( pmEven ‘ 𝑁 ) → 𝐹 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → 𝐹 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
15 |
|
fvco3 |
⊢ ( ( 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
16 |
11 14 15
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
17 |
4 7 2
|
psgnevpm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑆 ‘ 𝐹 ) = 1 ) |
18 |
17
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑆 ‘ 𝐹 ) = 1 ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑌 ‘ 1 ) ) |
20 |
1 3
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) = 1 ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑌 ‘ 1 ) = 1 ) |
22 |
16 19 21
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = 1 ) |