| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrhpsgnevpm.y | ⊢ 𝑌  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 2 |  | zrhpsgnevpm.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 3 |  | zrhpsgnevpm.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( SymGrp ‘ 𝑁 )  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 5 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } )  =  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) | 
						
							| 6 | 4 2 5 | psgnghm2 | ⊢ ( 𝑁  ∈  Fin  →  𝑆  ∈  ( ( SymGrp ‘ 𝑁 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) )  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) | 
						
							| 9 | 7 8 | ghmf | ⊢ ( 𝑆  ∈  ( ( SymGrp ‘ 𝑁 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝑁  ∈  Fin  →  𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 12 | 4 7 | evpmss | ⊢ ( pmEven ‘ 𝑁 )  ⊆  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 13 | 12 | sseli | ⊢ ( 𝐹  ∈  ( pmEven ‘ 𝑁 )  →  𝐹  ∈  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  𝐹  ∈  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) | 
						
							| 15 |  | fvco3 | ⊢ ( ( 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  ∧  𝐹  ∈  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 16 | 11 14 15 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 17 | 4 7 2 | psgnevpm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  ( 𝑆 ‘ 𝐹 )  =  1 ) | 
						
							| 18 | 17 | 3adant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  ( 𝑆 ‘ 𝐹 )  =  1 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 20 | 1 3 | zrh1 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑌 ‘ 1 )  =   1  ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  ( 𝑌 ‘ 1 )  =   1  ) | 
						
							| 22 | 16 19 21 | 3eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝑁 ) )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =   1  ) |