| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrhpsgninv.p | ⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 2 |  | zrhpsgninv.y | ⊢ 𝑌  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 3 |  | zrhpsgninv.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 4 |  | eqid | ⊢ ( SymGrp ‘ 𝑁 )  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 5 | 4 3 1 | psgninv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( 𝑆 ‘ ◡ 𝐹 )  =  ( 𝑆 ‘ 𝐹 ) ) | 
						
							| 6 | 5 | 3adant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( 𝑆 ‘ ◡ 𝐹 )  =  ( 𝑆 ‘ 𝐹 ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } )  =  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) | 
						
							| 9 | 4 3 8 | psgnghm2 | ⊢ ( 𝑁  ∈  Fin  →  𝑆  ∈  ( ( SymGrp ‘ 𝑁 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) | 
						
							| 11 | 1 10 | ghmf | ⊢ ( 𝑆  ∈  ( ( SymGrp ‘ 𝑁 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝑁  ∈  Fin  →  𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( invg ‘ ( SymGrp ‘ 𝑁 ) )  =  ( invg ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 15 | 4 1 14 | symginv | ⊢ ( 𝐹  ∈  𝑃  →  ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 )  =  ◡ 𝐹 ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 )  =  ◡ 𝐹 ) | 
						
							| 17 | 4 | symggrp | ⊢ ( 𝑁  ∈  Fin  →  ( SymGrp ‘ 𝑁 )  ∈  Grp ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( SymGrp ‘ 𝑁 )  ∈  Grp ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  𝐹  ∈  𝑃 ) | 
						
							| 20 | 1 14 | grpinvcl | ⊢ ( ( ( SymGrp ‘ 𝑁 )  ∈  Grp  ∧  𝐹  ∈  𝑃 )  →  ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 )  ∈  𝑃 ) | 
						
							| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 )  ∈  𝑃 ) | 
						
							| 22 | 16 21 | eqeltrrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ◡ 𝐹  ∈  𝑃 ) | 
						
							| 23 |  | fvco3 | ⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  ∧  ◡ 𝐹  ∈  𝑃 )  →  ( ( 𝑌  ∘  𝑆 ) ‘ ◡ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) | 
						
							| 24 | 13 22 23 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( ( 𝑌  ∘  𝑆 ) ‘ ◡ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) | 
						
							| 25 |  | fvco3 | ⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  ∧  𝐹  ∈  𝑃 )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 26 | 13 19 25 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 27 | 7 24 26 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( ( 𝑌  ∘  𝑆 ) ‘ ◡ 𝐹 )  =  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 ) ) |