Step |
Hyp |
Ref |
Expression |
1 |
|
zrhpsgnevpm.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
2 |
|
zrhpsgnevpm.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
3 |
|
zrhpsgnevpm.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
zrhpsgnodpm.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
5 |
|
zrhpsgnodpm.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
7 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
8 |
6 2 7
|
psgnghm2 |
⊢ ( 𝑁 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
10 |
4 9
|
ghmf |
⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
11 |
8 10
|
syl |
⊢ ( 𝑁 ∈ Fin → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
13 |
|
eldifi |
⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) → 𝐹 ∈ 𝑃 ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → 𝐹 ∈ 𝑃 ) |
15 |
|
fvco3 |
⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
17 |
6 4 2
|
psgnodpm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑆 ‘ 𝐹 ) = - 1 ) |
18 |
17
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑆 ‘ 𝐹 ) = - 1 ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑌 ‘ - 1 ) ) |
20 |
1
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( ℤring RingHom 𝑅 ) ) |
21 |
|
rhmghm |
⊢ ( 𝑌 ∈ ( ℤring RingHom 𝑅 ) → 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ) |
23 |
|
1z |
⊢ 1 ∈ ℤ |
24 |
23
|
a1i |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ℤ ) |
25 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
26 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
27 |
25 26 5
|
ghminv |
⊢ ( ( 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ∧ 1 ∈ ℤ ) → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) |
28 |
22 24 27
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) |
29 |
|
zringinvg |
⊢ ( 1 ∈ ℤ → - 1 = ( ( invg ‘ ℤring ) ‘ 1 ) ) |
30 |
23 29
|
ax-mp |
⊢ - 1 = ( ( invg ‘ ℤring ) ‘ 1 ) |
31 |
30
|
eqcomi |
⊢ ( ( invg ‘ ℤring ) ‘ 1 ) = - 1 |
32 |
31
|
fveq2i |
⊢ ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝑌 ‘ - 1 ) |
33 |
32
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝑌 ‘ - 1 ) ) |
34 |
1 3
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) = 1 ) |
35 |
34
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
36 |
28 33 35
|
3eqtr3d |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ - 1 ) = ( 𝐼 ‘ 1 ) ) |
37 |
36
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑌 ‘ - 1 ) = ( 𝐼 ‘ 1 ) ) |
38 |
16 19 37
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝐼 ‘ 1 ) ) |