| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrhpsgnevpm.y | ⊢ 𝑌  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 2 |  | zrhpsgnevpm.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 3 |  | zrhpsgnevpm.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | zrhpsgnodpm.p | ⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 5 |  | zrhpsgnodpm.i | ⊢ 𝐼  =  ( invg ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( SymGrp ‘ 𝑁 )  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 7 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } )  =  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) | 
						
							| 8 | 6 2 7 | psgnghm2 | ⊢ ( 𝑁  ∈  Fin  →  𝑆  ∈  ( ( SymGrp ‘ 𝑁 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) | 
						
							| 10 | 4 9 | ghmf | ⊢ ( 𝑆  ∈  ( ( SymGrp ‘ 𝑁 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝑁  ∈  Fin  →  𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 13 |  | eldifi | ⊢ ( 𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 15 |  | fvco3 | ⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  ∧  𝐹  ∈  𝑃 )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 17 | 6 4 2 | psgnodpm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  ( 𝑆 ‘ 𝐹 )  =  - 1 ) | 
						
							| 18 | 17 | 3adant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  ( 𝑆 ‘ 𝐹 )  =  - 1 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) )  =  ( 𝑌 ‘ - 1 ) ) | 
						
							| 20 | 1 | zrhrhm | ⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  ( ℤring  RingHom  𝑅 ) ) | 
						
							| 21 |  | rhmghm | ⊢ ( 𝑌  ∈  ( ℤring  RingHom  𝑅 )  →  𝑌  ∈  ( ℤring  GrpHom  𝑅 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  ( ℤring  GrpHom  𝑅 ) ) | 
						
							| 23 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑅  ∈  Ring  →  1  ∈  ℤ ) | 
						
							| 25 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 26 |  | eqid | ⊢ ( invg ‘ ℤring )  =  ( invg ‘ ℤring ) | 
						
							| 27 | 25 26 5 | ghminv | ⊢ ( ( 𝑌  ∈  ( ℤring  GrpHom  𝑅 )  ∧  1  ∈  ℤ )  →  ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) )  =  ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) | 
						
							| 28 | 22 24 27 | syl2anc | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) )  =  ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) | 
						
							| 29 |  | zringinvg | ⊢ ( 1  ∈  ℤ  →  - 1  =  ( ( invg ‘ ℤring ) ‘ 1 ) ) | 
						
							| 30 | 23 29 | ax-mp | ⊢ - 1  =  ( ( invg ‘ ℤring ) ‘ 1 ) | 
						
							| 31 | 30 | eqcomi | ⊢ ( ( invg ‘ ℤring ) ‘ 1 )  =  - 1 | 
						
							| 32 | 31 | fveq2i | ⊢ ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) )  =  ( 𝑌 ‘ - 1 ) | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) )  =  ( 𝑌 ‘ - 1 ) ) | 
						
							| 34 | 1 3 | zrh1 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑌 ‘ 1 )  =   1  ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐼 ‘ ( 𝑌 ‘ 1 ) )  =  ( 𝐼 ‘  1  ) ) | 
						
							| 36 | 28 33 35 | 3eqtr3d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑌 ‘ - 1 )  =  ( 𝐼 ‘  1  ) ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  ( 𝑌 ‘ - 1 )  =  ( 𝐼 ‘  1  ) ) | 
						
							| 38 | 16 19 37 | 3eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝑁 ) ) )  →  ( ( 𝑌  ∘  𝑆 ) ‘ 𝐹 )  =  ( 𝐼 ‘  1  ) ) |