Metamath Proof Explorer
Description: The ZRHom homomorphism is a homomorphism. (Contributed by Mario
Carneiro, 12-Jun-2015) (Revised by AV, 12-Jun-2019)
|
|
Ref |
Expression |
|
Hypothesis |
zrhval.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
|
Assertion |
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhval.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ 𝐿 = 𝐿 |
| 3 |
1
|
zrhrhmb |
⊢ ( 𝑅 ∈ Ring → ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ↔ 𝐿 = 𝐿 ) ) |
| 4 |
2 3
|
mpbiri |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |