Step |
Hyp |
Ref |
Expression |
1 |
|
zrhval.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
5 |
2 3 4
|
mulgrhm2 |
⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) } ) |
6 |
1 2 4
|
zrhval2 |
⊢ ( 𝑅 ∈ Ring → 𝐿 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
7 |
6
|
sneqd |
⊢ ( 𝑅 ∈ Ring → { 𝐿 } = { ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) } ) |
8 |
5 7
|
eqtr4d |
⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { 𝐿 } ) |
9 |
8
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ ( ℤring RingHom 𝑅 ) ↔ 𝐹 ∈ { 𝐿 } ) ) |
10 |
1
|
fvexi |
⊢ 𝐿 ∈ V |
11 |
10
|
elsn2 |
⊢ ( 𝐹 ∈ { 𝐿 } ↔ 𝐹 = 𝐿 ) |
12 |
9 11
|
bitrdi |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ ( ℤring RingHom 𝑅 ) ↔ 𝐹 = 𝐿 ) ) |