| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrhval.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( .g ‘ 𝑅 )  =  ( .g ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 5 | 2 3 4 | mulgrhm2 | ⊢ ( 𝑅  ∈  Ring  →  ( ℤring  RingHom  𝑅 )  =  { ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) } ) | 
						
							| 6 | 1 2 4 | zrhval2 | ⊢ ( 𝑅  ∈  Ring  →  𝐿  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) | 
						
							| 7 | 6 | sneqd | ⊢ ( 𝑅  ∈  Ring  →  { 𝐿 }  =  { ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) } ) | 
						
							| 8 | 5 7 | eqtr4d | ⊢ ( 𝑅  ∈  Ring  →  ( ℤring  RingHom  𝑅 )  =  { 𝐿 } ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐹  ∈  ( ℤring  RingHom  𝑅 )  ↔  𝐹  ∈  { 𝐿 } ) ) | 
						
							| 10 | 1 | fvexi | ⊢ 𝐿  ∈  V | 
						
							| 11 | 10 | elsn2 | ⊢ ( 𝐹  ∈  { 𝐿 }  ↔  𝐹  =  𝐿 ) | 
						
							| 12 | 9 11 | bitrdi | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐹  ∈  ( ℤring  RingHom  𝑅 )  ↔  𝐹  =  𝐿 ) ) |