Step |
Hyp |
Ref |
Expression |
1 |
|
zrhval.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
2 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( ℤring RingHom 𝑟 ) = ( ℤring RingHom 𝑅 ) ) |
3 |
2
|
unieqd |
⊢ ( 𝑟 = 𝑅 → ∪ ( ℤring RingHom 𝑟 ) = ∪ ( ℤring RingHom 𝑅 ) ) |
4 |
|
df-zrh |
⊢ ℤRHom = ( 𝑟 ∈ V ↦ ∪ ( ℤring RingHom 𝑟 ) ) |
5 |
|
ovex |
⊢ ( ℤring RingHom 𝑅 ) ∈ V |
6 |
5
|
uniex |
⊢ ∪ ( ℤring RingHom 𝑅 ) ∈ V |
7 |
3 4 6
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( ℤRHom ‘ 𝑅 ) = ∪ ( ℤring RingHom 𝑅 ) ) |
8 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( ℤRHom ‘ 𝑅 ) = ∅ ) |
9 |
|
dfrhm2 |
⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
10 |
9
|
reldmmpo |
⊢ Rel dom RingHom |
11 |
10
|
ovprc2 |
⊢ ( ¬ 𝑅 ∈ V → ( ℤring RingHom 𝑅 ) = ∅ ) |
12 |
11
|
unieqd |
⊢ ( ¬ 𝑅 ∈ V → ∪ ( ℤring RingHom 𝑅 ) = ∪ ∅ ) |
13 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( ¬ 𝑅 ∈ V → ∪ ( ℤring RingHom 𝑅 ) = ∅ ) |
15 |
8 14
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( ℤRHom ‘ 𝑅 ) = ∪ ( ℤring RingHom 𝑅 ) ) |
16 |
7 15
|
pm2.61i |
⊢ ( ℤRHom ‘ 𝑅 ) = ∪ ( ℤring RingHom 𝑅 ) |
17 |
1 16
|
eqtri |
⊢ 𝐿 = ∪ ( ℤring RingHom 𝑅 ) |