Step |
Hyp |
Ref |
Expression |
1 |
|
zrhval.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
2 |
|
zrhval2.m |
⊢ · = ( .g ‘ 𝑅 ) |
3 |
|
zrhval2.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
1
|
zrhval |
⊢ 𝐿 = ∪ ( ℤring RingHom 𝑅 ) |
5 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) |
6 |
2 5 3
|
mulgrhm2 |
⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) } ) |
7 |
6
|
unieqd |
⊢ ( 𝑅 ∈ Ring → ∪ ( ℤring RingHom 𝑅 ) = ∪ { ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) } ) |
8 |
|
zex |
⊢ ℤ ∈ V |
9 |
8
|
mptex |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ∈ V |
10 |
9
|
unisn |
⊢ ∪ { ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) } = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) |
11 |
7 10
|
eqtrdi |
⊢ ( 𝑅 ∈ Ring → ∪ ( ℤring RingHom 𝑅 ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
12 |
4 11
|
eqtrid |
⊢ ( 𝑅 ∈ Ring → 𝐿 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |