Metamath Proof Explorer


Theorem zring0

Description: The neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion zring0 0 = ( 0g ‘ ℤring )

Proof

Step Hyp Ref Expression
1 cncrng fld ∈ CRing
2 crngring ( ℂfld ∈ CRing → ℂfld ∈ Ring )
3 ringmnd ( ℂfld ∈ Ring → ℂfld ∈ Mnd )
4 1 2 3 mp2b fld ∈ Mnd
5 0z 0 ∈ ℤ
6 zsscn ℤ ⊆ ℂ
7 df-zring ring = ( ℂflds ℤ )
8 cnfldbas ℂ = ( Base ‘ ℂfld )
9 cnfld0 0 = ( 0g ‘ ℂfld )
10 7 8 9 ress0g ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ ) → 0 = ( 0g ‘ ℤring ) )
11 4 5 6 10 mp3an 0 = ( 0g ‘ ℤring )