Metamath Proof Explorer


Theorem zring1

Description: The multiplicative neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion zring1 1 = ( 1r ‘ ℤring )

Proof

Step Hyp Ref Expression
1 zsubrg ℤ ∈ ( SubRing ‘ ℂfld )
2 df-zring ring = ( ℂflds ℤ )
3 cnfld1 1 = ( 1r ‘ ℂfld )
4 2 3 subrg1 ( ℤ ∈ ( SubRing ‘ ℂfld ) → 1 = ( 1r ‘ ℤring ) )
5 1 4 ax-mp 1 = ( 1r ‘ ℤring )