| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 2 |  | eqid | ⊢ ( .g ‘ ℤring )  =  ( .g ‘ ℤring ) | 
						
							| 3 |  | zsubrg | ⊢ ℤ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 4 |  | subrgsubg | ⊢ ( ℤ  ∈  ( SubRing ‘ ℂfld )  →  ℤ  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ℤ  ∈  ( SubGrp ‘ ℂfld ) | 
						
							| 6 |  | df-zring | ⊢ ℤring  =  ( ℂfld  ↾s  ℤ ) | 
						
							| 7 | 6 | subggrp | ⊢ ( ℤ  ∈  ( SubGrp ‘ ℂfld )  →  ℤring  ∈  Grp ) | 
						
							| 8 | 5 7 | mp1i | ⊢ ( ⊤  →  ℤring  ∈  Grp ) | 
						
							| 9 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 10 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 11 |  | cnfldmulg | ⊢ ( ( 𝑥  ∈  ℤ  ∧  1  ∈  ℂ )  →  ( 𝑥 ( .g ‘ ℂfld ) 1 )  =  ( 𝑥  ·  1 ) ) | 
						
							| 12 | 10 11 | mpan2 | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥 ( .g ‘ ℂfld ) 1 )  =  ( 𝑥  ·  1 ) ) | 
						
							| 13 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 14 |  | eqid | ⊢ ( .g ‘ ℂfld )  =  ( .g ‘ ℂfld ) | 
						
							| 15 | 14 6 2 | subgmulg | ⊢ ( ( ℤ  ∈  ( SubGrp ‘ ℂfld )  ∧  𝑥  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 𝑥 ( .g ‘ ℂfld ) 1 )  =  ( 𝑥 ( .g ‘ ℤring ) 1 ) ) | 
						
							| 16 | 5 13 15 | mp3an13 | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥 ( .g ‘ ℂfld ) 1 )  =  ( 𝑥 ( .g ‘ ℤring ) 1 ) ) | 
						
							| 17 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 18 | 17 | mulridd | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥  ·  1 )  =  𝑥 ) | 
						
							| 19 | 12 16 18 | 3eqtr3rd | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  =  ( 𝑥 ( .g ‘ ℤring ) 1 ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧 ( .g ‘ ℤring ) 1 )  =  ( 𝑥 ( .g ‘ ℤring ) 1 ) ) | 
						
							| 21 | 20 | rspceeqv | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑥  =  ( 𝑥 ( .g ‘ ℤring ) 1 ) )  →  ∃ 𝑧  ∈  ℤ 𝑥  =  ( 𝑧 ( .g ‘ ℤring ) 1 ) ) | 
						
							| 22 | 19 21 | mpdan | ⊢ ( 𝑥  ∈  ℤ  →  ∃ 𝑧  ∈  ℤ 𝑥  =  ( 𝑧 ( .g ‘ ℤring ) 1 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℤ )  →  ∃ 𝑧  ∈  ℤ 𝑥  =  ( 𝑧 ( .g ‘ ℤring ) 1 ) ) | 
						
							| 24 | 1 2 8 9 23 | iscygd | ⊢ ( ⊤  →  ℤring  ∈  CycGrp ) | 
						
							| 25 | 24 | mptru | ⊢ ℤring  ∈  CycGrp |