| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 2 |
|
eqid |
⊢ ( .g ‘ ℤring ) = ( .g ‘ ℤring ) |
| 3 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
| 4 |
|
subrgsubg |
⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
| 6 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
| 7 |
6
|
subggrp |
⊢ ( ℤ ∈ ( SubGrp ‘ ℂfld ) → ℤring ∈ Grp ) |
| 8 |
5 7
|
mp1i |
⊢ ( ⊤ → ℤring ∈ Grp ) |
| 9 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 11 |
|
cnfldmulg |
⊢ ( ( 𝑥 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) |
| 12 |
10 11
|
mpan2 |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) |
| 13 |
|
1z |
⊢ 1 ∈ ℤ |
| 14 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
| 15 |
14 6 2
|
subgmulg |
⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) |
| 16 |
5 13 15
|
mp3an13 |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) |
| 17 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 18 |
17
|
mulridd |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 · 1 ) = 𝑥 ) |
| 19 |
12 16 18
|
3eqtr3rd |
⊢ ( 𝑥 ∈ ℤ → 𝑥 = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ( .g ‘ ℤring ) 1 ) = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) |
| 21 |
20
|
rspceeqv |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) → ∃ 𝑧 ∈ ℤ 𝑥 = ( 𝑧 ( .g ‘ ℤring ) 1 ) ) |
| 22 |
19 21
|
mpdan |
⊢ ( 𝑥 ∈ ℤ → ∃ 𝑧 ∈ ℤ 𝑥 = ( 𝑧 ( .g ‘ ℤring ) 1 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℤ ) → ∃ 𝑧 ∈ ℤ 𝑥 = ( 𝑧 ( .g ‘ ℤring ) 1 ) ) |
| 24 |
1 2 8 9 23
|
iscygd |
⊢ ( ⊤ → ℤring ∈ CycGrp ) |
| 25 |
24
|
mptru |
⊢ ℤring ∈ CycGrp |