Step |
Hyp |
Ref |
Expression |
1 |
|
zringfrac.1 |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
zringfrac.2 |
⊢ ∼ = ( ℤring ~RL ( ℤ ∖ { 0 } ) ) |
3 |
|
zringfrac.3 |
⊢ 𝐹 = ( 𝑞 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
4 |
1
|
qdrng |
⊢ 𝑄 ∈ DivRing |
5 |
|
drngring |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ Ring ) |
6 |
4 5
|
ax-mp |
⊢ 𝑄 ∈ Ring |
7 |
|
zringidom |
⊢ ℤring ∈ IDomn |
8 |
|
id |
⊢ ( ℤring ∈ IDomn → ℤring ∈ IDomn ) |
9 |
8
|
fracfld |
⊢ ( ℤring ∈ IDomn → ( Frac ‘ ℤring ) ∈ Field ) |
10 |
9
|
fldcrngd |
⊢ ( ℤring ∈ IDomn → ( Frac ‘ ℤring ) ∈ CRing ) |
11 |
10
|
crngringd |
⊢ ( ℤring ∈ IDomn → ( Frac ‘ ℤring ) ∈ Ring ) |
12 |
7 11
|
ax-mp |
⊢ ( Frac ‘ ℤring ) ∈ Ring |
13 |
6 12
|
pm3.2i |
⊢ ( 𝑄 ∈ Ring ∧ ( Frac ‘ ℤring ) ∈ Ring ) |
14 |
|
ringgrp |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Grp ) |
15 |
6 14
|
ax-mp |
⊢ 𝑄 ∈ Grp |
16 |
|
ringgrp |
⊢ ( ( Frac ‘ ℤring ) ∈ Ring → ( Frac ‘ ℤring ) ∈ Grp ) |
17 |
12 16
|
ax-mp |
⊢ ( Frac ‘ ℤring ) ∈ Grp |
18 |
15 17
|
pm3.2i |
⊢ ( 𝑄 ∈ Grp ∧ ( Frac ‘ ℤring ) ∈ Grp ) |
19 |
|
qnumcl |
⊢ ( 𝑞 ∈ ℚ → ( numer ‘ 𝑞 ) ∈ ℤ ) |
20 |
|
qdencl |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℕ ) |
21 |
20
|
nnzd |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℤ ) |
22 |
20
|
nnne0d |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ≠ 0 ) |
23 |
21 22
|
eldifsnd |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ) |
24 |
19 23
|
opelxpd |
⊢ ( 𝑞 ∈ ℚ → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∈ ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
25 |
2
|
ovexi |
⊢ ∼ ∈ V |
26 |
25
|
ecelqsi |
⊢ ( 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∈ ( ℤ × ( ℤ ∖ { 0 } ) ) → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ) |
27 |
24 26
|
syl |
⊢ ( 𝑞 ∈ ℚ → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ) |
28 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
29 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
30 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
31 |
|
eqid |
⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) |
32 |
|
eqid |
⊢ ( ℤ × ( ℤ ∖ { 0 } ) ) = ( ℤ × ( ℤ ∖ { 0 } ) ) |
33 |
|
fracval |
⊢ ( Frac ‘ ℤring ) = ( ℤring RLocal ( RLReg ‘ ℤring ) ) |
34 |
8
|
idomdomd |
⊢ ( ℤring ∈ IDomn → ℤring ∈ Domn ) |
35 |
7 34
|
ax-mp |
⊢ ℤring ∈ Domn |
36 |
|
eqid |
⊢ ( RLReg ‘ ℤring ) = ( RLReg ‘ ℤring ) |
37 |
28 36 29
|
isdomn6 |
⊢ ( ℤring ∈ Domn ↔ ( ℤring ∈ NzRing ∧ ( ℤ ∖ { 0 } ) = ( RLReg ‘ ℤring ) ) ) |
38 |
35 37
|
mpbi |
⊢ ( ℤring ∈ NzRing ∧ ( ℤ ∖ { 0 } ) = ( RLReg ‘ ℤring ) ) |
39 |
38
|
simpri |
⊢ ( ℤ ∖ { 0 } ) = ( RLReg ‘ ℤring ) |
40 |
39
|
oveq2i |
⊢ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) = ( ℤring RLocal ( RLReg ‘ ℤring ) ) |
41 |
33 40
|
eqtr4i |
⊢ ( Frac ‘ ℤring ) = ( ℤring RLocal ( ℤ ∖ { 0 } ) ) |
42 |
7
|
a1i |
⊢ ( ⊤ → ℤring ∈ IDomn ) |
43 |
|
difssd |
⊢ ( ⊤ → ( ℤ ∖ { 0 } ) ⊆ ℤ ) |
44 |
28 29 30 31 32 41 2 42 43
|
rlocbas |
⊢ ( ⊤ → ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) = ( Base ‘ ( Frac ‘ ℤring ) ) ) |
45 |
44
|
mptru |
⊢ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) = ( Base ‘ ( Frac ‘ ℤring ) ) |
46 |
27 45
|
eleqtrdi |
⊢ ( 𝑞 ∈ ℚ → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ) |
47 |
3 46
|
fmpti |
⊢ 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) |
48 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ V ) |
49 |
25 48
|
ax-mp |
⊢ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ V |
50 |
3
|
fvmpt2 |
⊢ ( ( 𝑞 ∈ ℚ ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ V ) → ( 𝐹 ‘ 𝑞 ) = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
51 |
49 50
|
mpan2 |
⊢ ( 𝑞 ∈ ℚ → ( 𝐹 ‘ 𝑞 ) = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
52 |
51
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ 𝑞 ) = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
53 |
|
fveq2 |
⊢ ( 𝑞 = 𝑝 → ( numer ‘ 𝑞 ) = ( numer ‘ 𝑝 ) ) |
54 |
|
fveq2 |
⊢ ( 𝑞 = 𝑝 → ( denom ‘ 𝑞 ) = ( denom ‘ 𝑝 ) ) |
55 |
53 54
|
opeq12d |
⊢ ( 𝑞 = 𝑝 → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ) |
56 |
55
|
eceq1d |
⊢ ( 𝑞 = 𝑝 → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) |
57 |
56 3 27
|
fvmpt3 |
⊢ ( 𝑝 ∈ ℚ → ( 𝐹 ‘ 𝑝 ) = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) |
58 |
57
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ 𝑝 ) = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) |
59 |
52 58
|
oveq12d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ( 𝐹 ‘ 𝑝 ) ) = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
60 |
41
|
fveq2i |
⊢ ( +g ‘ ( Frac ‘ ℤring ) ) = ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
61 |
60
|
oveqi |
⊢ ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ( 𝐹 ‘ 𝑝 ) ) |
62 |
61
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
63 |
|
fveq2 |
⊢ ( 𝑞 = 𝑢 → ( numer ‘ 𝑞 ) = ( numer ‘ 𝑢 ) ) |
64 |
|
fveq2 |
⊢ ( 𝑞 = 𝑢 → ( denom ‘ 𝑞 ) = ( denom ‘ 𝑢 ) ) |
65 |
63 64
|
opeq12d |
⊢ ( 𝑞 = 𝑢 → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ) |
66 |
65
|
eceq1d |
⊢ ( 𝑞 = 𝑢 → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ ) |
67 |
66
|
cbvmptv |
⊢ ( 𝑞 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) = ( 𝑢 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ ) |
68 |
3 67
|
eqtri |
⊢ 𝐹 = ( 𝑢 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ ) |
69 |
|
zring1 |
⊢ 1 = ( 1r ‘ ℤring ) |
70 |
7
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ℤring ∈ IDomn ) |
71 |
70
|
idomcringd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ℤring ∈ CRing ) |
72 |
35
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ℤring ∈ Domn ) |
73 |
|
eqid |
⊢ ( mulGrp ‘ ℤring ) = ( mulGrp ‘ ℤring ) |
74 |
28 29 73
|
isdomn3 |
⊢ ( ℤring ∈ Domn ↔ ( ℤring ∈ Ring ∧ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) ) |
75 |
72 74
|
sylib |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ℤring ∈ Ring ∧ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) ) |
76 |
75
|
simprd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
77 |
28 29 69 30 31 32 2 71 76
|
erler |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ∼ Er ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
78 |
|
qcn |
⊢ ( 𝑞 ∈ ℚ → 𝑞 ∈ ℂ ) |
79 |
78
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 𝑞 ∈ ℂ ) |
80 |
|
qcn |
⊢ ( 𝑝 ∈ ℚ → 𝑝 ∈ ℂ ) |
81 |
80
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 𝑝 ∈ ℂ ) |
82 |
79 81
|
addcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 + 𝑝 ) ∈ ℂ ) |
83 |
|
qaddcl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 + 𝑝 ) ∈ ℚ ) |
84 |
|
qdencl |
⊢ ( ( 𝑞 + 𝑝 ) ∈ ℚ → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℕ ) |
85 |
83 84
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℕ ) |
86 |
85
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℂ ) |
87 |
20
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℕ ) |
88 |
87
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℂ ) |
89 |
|
qdencl |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ∈ ℕ ) |
90 |
89
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ℕ ) |
91 |
90
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ℂ ) |
92 |
88 91
|
mulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℂ ) |
93 |
82 86 92
|
mul32d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( 𝑞 + 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) |
94 |
|
qmuldeneqnum |
⊢ ( ( 𝑞 + 𝑝 ) ∈ ℚ → ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) = ( numer ‘ ( 𝑞 + 𝑝 ) ) ) |
95 |
83 94
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) = ( numer ‘ ( 𝑞 + 𝑝 ) ) ) |
96 |
95
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 + 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
97 |
79 88 91
|
mulassd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( denom ‘ 𝑝 ) ) = ( 𝑞 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
98 |
|
qmuldeneqnum |
⊢ ( 𝑞 ∈ ℚ → ( 𝑞 · ( denom ‘ 𝑞 ) ) = ( numer ‘ 𝑞 ) ) |
99 |
98
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · ( denom ‘ 𝑞 ) ) = ( numer ‘ 𝑞 ) ) |
100 |
99
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( denom ‘ 𝑝 ) ) = ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) |
101 |
97 100
|
eqtr3d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) |
102 |
81 91 88
|
mulassd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑝 · ( denom ‘ 𝑝 ) ) · ( denom ‘ 𝑞 ) ) = ( 𝑝 · ( ( denom ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
103 |
|
qmuldeneqnum |
⊢ ( 𝑝 ∈ ℚ → ( 𝑝 · ( denom ‘ 𝑝 ) ) = ( numer ‘ 𝑝 ) ) |
104 |
103
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑝 · ( denom ‘ 𝑝 ) ) = ( numer ‘ 𝑝 ) ) |
105 |
104
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑝 · ( denom ‘ 𝑝 ) ) · ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) |
106 |
91 88
|
mulcomd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) = ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) |
107 |
106
|
oveq2d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑝 · ( ( denom ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) = ( 𝑝 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
108 |
102 105 107
|
3eqtr3rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑝 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) |
109 |
101 108
|
oveq12d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) + ( 𝑝 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) = ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
110 |
79 92 81 109
|
joinlmuladdmuld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 + 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
111 |
110
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 + 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) = ( ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) |
112 |
93 96 111
|
3eqtr3d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ ( 𝑞 + 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) |
113 |
39
|
oveq2i |
⊢ ( ℤring ~RL ( ℤ ∖ { 0 } ) ) = ( ℤring ~RL ( RLReg ‘ ℤring ) ) |
114 |
2 113
|
eqtri |
⊢ ∼ = ( ℤring ~RL ( RLReg ‘ ℤring ) ) |
115 |
|
qnumcl |
⊢ ( ( 𝑞 + 𝑝 ) ∈ ℚ → ( numer ‘ ( 𝑞 + 𝑝 ) ) ∈ ℤ ) |
116 |
83 115
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ ( 𝑞 + 𝑝 ) ) ∈ ℤ ) |
117 |
19
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑞 ) ∈ ℤ ) |
118 |
89
|
nnzd |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ∈ ℤ ) |
119 |
118
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ℤ ) |
120 |
117 119
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℤ ) |
121 |
|
qnumcl |
⊢ ( 𝑝 ∈ ℚ → ( numer ‘ 𝑝 ) ∈ ℤ ) |
122 |
121
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑝 ) ∈ ℤ ) |
123 |
21
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℤ ) |
124 |
122 123
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ∈ ℤ ) |
125 |
120 124
|
zaddcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ∈ ℤ ) |
126 |
85
|
nnzd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℤ ) |
127 |
85
|
nnne0d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ≠ 0 ) |
128 |
126 127
|
eldifsnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
129 |
128 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ( RLReg ‘ ℤring ) ) |
130 |
123 119
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℤ ) |
131 |
87 90
|
nnmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℕ ) |
132 |
131
|
nnne0d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ≠ 0 ) |
133 |
130 132
|
eldifsnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
134 |
133 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ( RLReg ‘ ℤring ) ) |
135 |
28 30 114 71 116 125 129 134
|
fracerl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ∼ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ↔ ( ( numer ‘ ( 𝑞 + 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) ) |
136 |
112 135
|
mpbird |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ∼ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ) |
137 |
77 136
|
erthi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → [ 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ] ∼ = [ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
138 |
137
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → [ 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ] ∼ = [ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
139 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 + 𝑝 ) → ( numer ‘ 𝑢 ) = ( numer ‘ ( 𝑞 + 𝑝 ) ) ) |
140 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 + 𝑝 ) → ( denom ‘ 𝑢 ) = ( denom ‘ ( 𝑞 + 𝑝 ) ) ) |
141 |
139 140
|
opeq12d |
⊢ ( 𝑢 = ( 𝑞 + 𝑝 ) → 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 = 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ) |
142 |
141
|
adantl |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 = 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ) |
143 |
142
|
eceq1d |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ] ∼ ) |
144 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
145 |
|
eqid |
⊢ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) = ( ℤring RLocal ( ℤ ∖ { 0 } ) ) |
146 |
|
zringcrng |
⊢ ℤring ∈ CRing |
147 |
146
|
a1i |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ℤring ∈ CRing ) |
148 |
35 74
|
mpbi |
⊢ ( ℤring ∈ Ring ∧ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
149 |
148
|
simpri |
⊢ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) |
150 |
149
|
a1i |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
151 |
117
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( numer ‘ 𝑞 ) ∈ ℤ ) |
152 |
122
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( numer ‘ 𝑝 ) ∈ ℤ ) |
153 |
23
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ) |
154 |
153
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ) |
155 |
89
|
nnne0d |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ≠ 0 ) |
156 |
118 155
|
eldifsnd |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ∈ ( ℤ ∖ { 0 } ) ) |
157 |
156
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ( ℤ ∖ { 0 } ) ) |
158 |
157
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( denom ‘ 𝑝 ) ∈ ( ℤ ∖ { 0 } ) ) |
159 |
|
eqid |
⊢ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) = ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
160 |
28 30 144 145 2 147 150 151 152 154 158 159
|
rlocaddval |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) = [ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
161 |
138 143 160
|
3eqtr4d |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
162 |
|
ovexd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ∈ V ) |
163 |
68 161 83 162
|
fvmptd2 |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
164 |
59 62 163
|
3eqtr4rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
165 |
164
|
rgen2 |
⊢ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) |
166 |
47 165
|
pm3.2i |
⊢ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
167 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
168 |
|
eqid |
⊢ ( Base ‘ ( Frac ‘ ℤring ) ) = ( Base ‘ ( Frac ‘ ℤring ) ) |
169 |
|
qex |
⊢ ℚ ∈ V |
170 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
171 |
1 170
|
ressplusg |
⊢ ( ℚ ∈ V → + = ( +g ‘ 𝑄 ) ) |
172 |
169 171
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
173 |
|
eqid |
⊢ ( +g ‘ ( Frac ‘ ℤring ) ) = ( +g ‘ ( Frac ‘ ℤring ) ) |
174 |
167 168 172 173
|
isghm |
⊢ ( 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) ↔ ( ( 𝑄 ∈ Grp ∧ ( Frac ‘ ℤring ) ∈ Grp ) ∧ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
175 |
18 166 174
|
mpbir2an |
⊢ 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) |
176 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
177 |
176
|
ringmgp |
⊢ ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
178 |
6 177
|
ax-mp |
⊢ ( mulGrp ‘ 𝑄 ) ∈ Mnd |
179 |
|
eqid |
⊢ ( mulGrp ‘ ( Frac ‘ ℤring ) ) = ( mulGrp ‘ ( Frac ‘ ℤring ) ) |
180 |
179
|
ringmgp |
⊢ ( ( Frac ‘ ℤring ) ∈ Ring → ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd ) |
181 |
12 180
|
ax-mp |
⊢ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd |
182 |
178 181
|
pm3.2i |
⊢ ( ( mulGrp ‘ 𝑄 ) ∈ Mnd ∧ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd ) |
183 |
|
eqid |
⊢ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) = ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
184 |
28 30 144 145 2 71 76 117 122 153 157 183
|
rlocmulval |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) = [ 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
185 |
79 81
|
mulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · 𝑝 ) ∈ ℂ ) |
186 |
|
qmulcl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · 𝑝 ) ∈ ℚ ) |
187 |
|
qdencl |
⊢ ( ( 𝑞 · 𝑝 ) ∈ ℚ → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℕ ) |
188 |
186 187
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℕ ) |
189 |
188
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℂ ) |
190 |
185 189 92
|
mul32d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( 𝑞 · 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
191 |
79 81 88 91
|
mul4d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) ) |
192 |
191
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
193 |
190 192
|
eqtrd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
194 |
|
qmuldeneqnum |
⊢ ( ( 𝑞 · 𝑝 ) ∈ ℚ → ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( numer ‘ ( 𝑞 · 𝑝 ) ) ) |
195 |
186 194
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( numer ‘ ( 𝑞 · 𝑝 ) ) ) |
196 |
195
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 · 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
197 |
99 104
|
oveq12d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) ) |
198 |
197
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
199 |
193 196 198
|
3eqtr3rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 · 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
200 |
117 122
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) ∈ ℤ ) |
201 |
|
qnumcl |
⊢ ( ( 𝑞 · 𝑝 ) ∈ ℚ → ( numer ‘ ( 𝑞 · 𝑝 ) ) ∈ ℤ ) |
202 |
186 201
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ ( 𝑞 · 𝑝 ) ) ∈ ℤ ) |
203 |
188
|
nnzd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℤ ) |
204 |
188
|
nnne0d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ≠ 0 ) |
205 |
203 204
|
eldifsnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
206 |
205 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ( RLReg ‘ ℤring ) ) |
207 |
28 30 114 71 200 202 134 206
|
fracerl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ∼ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ↔ ( ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 · 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) ) |
208 |
199 207
|
mpbird |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ∼ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ) |
209 |
77 208
|
erthi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → [ 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
210 |
184 209
|
eqtrd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
211 |
41
|
fveq2i |
⊢ ( .r ‘ ( Frac ‘ ℤring ) ) = ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
212 |
211
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( .r ‘ ( Frac ‘ ℤring ) ) = ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ) |
213 |
212 52 58
|
oveq123d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
214 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → ( numer ‘ 𝑢 ) = ( numer ‘ ( 𝑞 · 𝑝 ) ) ) |
215 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → ( denom ‘ 𝑢 ) = ( denom ‘ ( 𝑞 · 𝑝 ) ) ) |
216 |
214 215
|
opeq12d |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 = 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ) |
217 |
216
|
eceq1d |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
218 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ∈ V ) |
219 |
25 218
|
mp1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ∈ V ) |
220 |
68 217 186 219
|
fvmptd3 |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
221 |
210 213 220
|
3eqtr4rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
222 |
221
|
rgen2 |
⊢ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) |
223 |
|
zssq |
⊢ ℤ ⊆ ℚ |
224 |
|
1z |
⊢ 1 ∈ ℤ |
225 |
223 224
|
sselii |
⊢ 1 ∈ ℚ |
226 |
|
fveq2 |
⊢ ( 𝑞 = 1 → ( numer ‘ 𝑞 ) = ( numer ‘ 1 ) ) |
227 |
|
1zzd |
⊢ ( ℤring ∈ IDomn → 1 ∈ ℤ ) |
228 |
227
|
znumd |
⊢ ( ℤring ∈ IDomn → ( numer ‘ 1 ) = 1 ) |
229 |
7 228
|
ax-mp |
⊢ ( numer ‘ 1 ) = 1 |
230 |
226 229
|
eqtrdi |
⊢ ( 𝑞 = 1 → ( numer ‘ 𝑞 ) = 1 ) |
231 |
|
fveq2 |
⊢ ( 𝑞 = 1 → ( denom ‘ 𝑞 ) = ( denom ‘ 1 ) ) |
232 |
227
|
zdend |
⊢ ( ℤring ∈ IDomn → ( denom ‘ 1 ) = 1 ) |
233 |
7 232
|
ax-mp |
⊢ ( denom ‘ 1 ) = 1 |
234 |
231 233
|
eqtrdi |
⊢ ( 𝑞 = 1 → ( denom ‘ 𝑞 ) = 1 ) |
235 |
230 234
|
opeq12d |
⊢ ( 𝑞 = 1 → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 1 , 1 〉 ) |
236 |
235
|
eceq1d |
⊢ ( 𝑞 = 1 → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 1 , 1 〉 ] ∼ ) |
237 |
236 3 49
|
fvmpt3i |
⊢ ( 1 ∈ ℚ → ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ ) |
238 |
225 237
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ |
239 |
47 222 238
|
3pm3.2i |
⊢ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ ) |
240 |
176 167
|
mgpbas |
⊢ ℚ = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
241 |
179 168
|
mgpbas |
⊢ ( Base ‘ ( Frac ‘ ℤring ) ) = ( Base ‘ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
242 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
243 |
1 242
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
244 |
169 243
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
245 |
176 244
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑄 ) ) |
246 |
|
eqid |
⊢ ( .r ‘ ( Frac ‘ ℤring ) ) = ( .r ‘ ( Frac ‘ ℤring ) ) |
247 |
179 246
|
mgpplusg |
⊢ ( .r ‘ ( Frac ‘ ℤring ) ) = ( +g ‘ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
248 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
249 |
176 248
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑄 ) ) |
250 |
146
|
a1i |
⊢ ( ℤring ∈ IDomn → ℤring ∈ CRing ) |
251 |
149
|
a1i |
⊢ ( ℤring ∈ IDomn → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
252 |
|
eqid |
⊢ [ 〈 1 , 1 〉 ] ∼ = [ 〈 1 , 1 〉 ] ∼ |
253 |
29 69 41 2 250 251 252
|
rloc1r |
⊢ ( ℤring ∈ IDomn → [ 〈 1 , 1 〉 ] ∼ = ( 1r ‘ ( Frac ‘ ℤring ) ) ) |
254 |
7 253
|
ax-mp |
⊢ [ 〈 1 , 1 〉 ] ∼ = ( 1r ‘ ( Frac ‘ ℤring ) ) |
255 |
179 254
|
ringidval |
⊢ [ 〈 1 , 1 〉 ] ∼ = ( 0g ‘ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
256 |
240 241 245 247 249 255
|
ismhm |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) ↔ ( ( ( mulGrp ‘ 𝑄 ) ∈ Mnd ∧ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd ) ∧ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ ) ) ) |
257 |
182 239 256
|
mpbir2an |
⊢ 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
258 |
175 257
|
pm3.2i |
⊢ ( 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) ) |
259 |
176 179
|
isrhm |
⊢ ( 𝐹 ∈ ( 𝑄 RingHom ( Frac ‘ ℤring ) ) ↔ ( ( 𝑄 ∈ Ring ∧ ( Frac ‘ ℤring ) ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) ) ) ) |
260 |
13 258 259
|
mpbir2an |
⊢ 𝐹 ∈ ( 𝑄 RingHom ( Frac ‘ ℤring ) ) |
261 |
46
|
rgen |
⊢ ∀ 𝑞 ∈ ℚ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) |
262 |
117
|
zcnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑞 ) ∈ ℂ ) |
263 |
122
|
zcnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑝 ) ∈ ℂ ) |
264 |
22
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ≠ 0 ) |
265 |
155
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ≠ 0 ) |
266 |
262 88 263 91 264 265
|
divmuleqd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ↔ ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
267 |
153 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ( RLReg ‘ ℤring ) ) |
268 |
157 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ( RLReg ‘ ℤring ) ) |
269 |
28 30 114 71 117 122 267 268
|
fracerl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∼ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ↔ ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
270 |
24
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∈ ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
271 |
77 270
|
erth |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∼ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ↔ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
272 |
266 269 271
|
3bitr2rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ↔ ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) ) |
273 |
272
|
biimpa |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) |
274 |
|
qeqnumdivden |
⊢ ( 𝑞 ∈ ℚ → 𝑞 = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
275 |
274
|
ad2antrr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → 𝑞 = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
276 |
|
qeqnumdivden |
⊢ ( 𝑝 ∈ ℚ → 𝑝 = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) |
277 |
276
|
ad2antlr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → 𝑝 = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) |
278 |
273 275 277
|
3eqtr4d |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → 𝑞 = 𝑝 ) |
279 |
278
|
ex |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ → 𝑞 = 𝑝 ) ) |
280 |
279
|
rgen2 |
⊢ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ → 𝑞 = 𝑝 ) |
281 |
3 56
|
f1mpt |
⊢ ( 𝐹 : ℚ –1-1→ ( Base ‘ ( Frac ‘ ℤring ) ) ↔ ( ∀ 𝑞 ∈ ℚ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ → 𝑞 = 𝑝 ) ) ) |
282 |
261 280 281
|
mpbir2an |
⊢ 𝐹 : ℚ –1-1→ ( Base ‘ ( Frac ‘ ℤring ) ) |
283 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → ( numer ‘ 𝑞 ) = ( numer ‘ ( 𝑎 / 𝑏 ) ) ) |
284 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → ( denom ‘ 𝑞 ) = ( denom ‘ ( 𝑎 / 𝑏 ) ) ) |
285 |
283 284
|
opeq12d |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ) |
286 |
285
|
eceq1d |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) |
287 |
286
|
eqeq2d |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → ( 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ↔ 𝑧 = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) ) |
288 |
|
simpllr |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 ∈ ℤ ) |
289 |
223 288
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 ∈ ℚ ) |
290 |
|
simplr |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
291 |
290
|
eldifad |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ ℤ ) |
292 |
223 291
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ ℚ ) |
293 |
|
eldifsni |
⊢ ( 𝑏 ∈ ( ℤ ∖ { 0 } ) → 𝑏 ≠ 0 ) |
294 |
290 293
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ≠ 0 ) |
295 |
|
qdivcl |
⊢ ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑏 ≠ 0 ) → ( 𝑎 / 𝑏 ) ∈ ℚ ) |
296 |
289 292 294 295
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑎 / 𝑏 ) ∈ ℚ ) |
297 |
|
simpr |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
298 |
146
|
a1i |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ℤring ∈ CRing ) |
299 |
149
|
a1i |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
300 |
28 29 69 30 31 32 2 298 299
|
erler |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∼ Er ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
301 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑎 ∈ ℤ ) |
302 |
301
|
zcnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑎 ∈ ℂ ) |
303 |
|
eldifi |
⊢ ( 𝑏 ∈ ( ℤ ∖ { 0 } ) → 𝑏 ∈ ℤ ) |
304 |
303
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ℤ ) |
305 |
304
|
zcnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ℂ ) |
306 |
293
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ≠ 0 ) |
307 |
302 305 306
|
divcld |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 𝑎 / 𝑏 ) ∈ ℂ ) |
308 |
223 301
|
sselid |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑎 ∈ ℚ ) |
309 |
223 304
|
sselid |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ℚ ) |
310 |
308 309 306 295
|
syl3anc |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 𝑎 / 𝑏 ) ∈ ℚ ) |
311 |
|
qdencl |
⊢ ( ( 𝑎 / 𝑏 ) ∈ ℚ → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℕ ) |
312 |
310 311
|
syl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℕ ) |
313 |
312
|
nncnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℂ ) |
314 |
307 313 305
|
mul32d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) · 𝑏 ) = ( ( ( 𝑎 / 𝑏 ) · 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) ) |
315 |
|
qmuldeneqnum |
⊢ ( ( 𝑎 / 𝑏 ) ∈ ℚ → ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( numer ‘ ( 𝑎 / 𝑏 ) ) ) |
316 |
310 315
|
syl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( numer ‘ ( 𝑎 / 𝑏 ) ) ) |
317 |
316
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) · 𝑏 ) = ( ( numer ‘ ( 𝑎 / 𝑏 ) ) · 𝑏 ) ) |
318 |
302 305 306
|
divcan1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( 𝑎 / 𝑏 ) · 𝑏 ) = 𝑎 ) |
319 |
318
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑎 / 𝑏 ) · 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( 𝑎 · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) ) |
320 |
314 317 319
|
3eqtr3rd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 𝑎 · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( ( numer ‘ ( 𝑎 / 𝑏 ) ) · 𝑏 ) ) |
321 |
146
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ℤring ∈ CRing ) |
322 |
|
qnumcl |
⊢ ( ( 𝑎 / 𝑏 ) ∈ ℚ → ( numer ‘ ( 𝑎 / 𝑏 ) ) ∈ ℤ ) |
323 |
310 322
|
syl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( numer ‘ ( 𝑎 / 𝑏 ) ) ∈ ℤ ) |
324 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
325 |
324 39
|
eleqtrdi |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ( RLReg ‘ ℤring ) ) |
326 |
312
|
nnzd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℤ ) |
327 |
312
|
nnne0d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ≠ 0 ) |
328 |
326 327
|
eldifsnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
329 |
328 39
|
eleqtrdi |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ( RLReg ‘ ℤring ) ) |
330 |
28 30 114 321 301 323 325 329
|
fracerl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 〈 𝑎 , 𝑏 〉 ∼ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ↔ ( 𝑎 · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( ( numer ‘ ( 𝑎 / 𝑏 ) ) · 𝑏 ) ) ) |
331 |
320 330
|
mpbird |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 〈 𝑎 , 𝑏 〉 ∼ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ) |
332 |
331
|
ad4ant23 |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 𝑎 , 𝑏 〉 ∼ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ) |
333 |
300 332
|
erthi |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 𝑎 , 𝑏 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) |
334 |
297 333
|
eqtrd |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑧 = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) |
335 |
287 296 334
|
rspcedvdw |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
336 |
45
|
eleq2i |
⊢ ( 𝑧 ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ↔ 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ) |
337 |
336
|
biimpri |
⊢ ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) → 𝑧 ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ) |
338 |
337
|
elrlocbasi |
⊢ ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
339 |
335 338
|
r19.29vva |
⊢ ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) → ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
340 |
339
|
rgen |
⊢ ∀ 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ |
341 |
3
|
fompt |
⊢ ( 𝐹 : ℚ –onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ↔ ( ∀ 𝑞 ∈ ℚ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) ) |
342 |
261 340 341
|
mpbir2an |
⊢ 𝐹 : ℚ –onto→ ( Base ‘ ( Frac ‘ ℤring ) ) |
343 |
|
df-f1o |
⊢ ( 𝐹 : ℚ –1-1-onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ↔ ( 𝐹 : ℚ –1-1→ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝐹 : ℚ –onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ) ) |
344 |
282 342 343
|
mpbir2an |
⊢ 𝐹 : ℚ –1-1-onto→ ( Base ‘ ( Frac ‘ ℤring ) ) |
345 |
167 168
|
isrim |
⊢ ( 𝐹 ∈ ( 𝑄 RingIso ( Frac ‘ ℤring ) ) ↔ ( 𝐹 ∈ ( 𝑄 RingHom ( Frac ‘ ℤring ) ) ∧ 𝐹 : ℚ –1-1-onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ) ) |
346 |
260 344 345
|
mpbir2an |
⊢ 𝐹 ∈ ( 𝑄 RingIso ( Frac ‘ ℤring ) ) |