Step |
Hyp |
Ref |
Expression |
1 |
|
zringcrng |
⊢ ℤring ∈ CRing |
2 |
|
zringnzr |
⊢ ℤring ∈ NzRing |
3 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℤ ∖ { 0 } ) → 𝑥 ∈ ℤ ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → 𝑥 ∈ ℤ ) |
5 |
4
|
zcnd |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → 𝑥 ∈ ℂ ) |
6 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → 𝑦 ∈ ℤ ) |
7 |
6
|
zcnd |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → 𝑦 ∈ ℂ ) |
8 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → ( 𝑥 · 𝑦 ) = 0 ) |
9 |
|
mul0or |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) = 0 ↔ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) |
11 |
5 7 8 10
|
syl21anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) |
12 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ℤ ∖ { 0 } ) → 𝑥 ≠ 0 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → 𝑥 ≠ 0 ) |
14 |
13
|
neneqd |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → ¬ 𝑥 = 0 ) |
15 |
11 14
|
orcnd |
⊢ ( ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 · 𝑦 ) = 0 ) → 𝑦 = 0 ) |
16 |
15
|
ex |
⊢ ( ( 𝑥 ∈ ( ℤ ∖ { 0 } ) ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ) |
17 |
16
|
ralrimiva |
⊢ ( 𝑥 ∈ ( ℤ ∖ { 0 } ) → ∀ 𝑦 ∈ ℤ ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ) |
18 |
|
eqid |
⊢ ( RLReg ‘ ℤring ) = ( RLReg ‘ ℤring ) |
19 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
20 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
21 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
22 |
18 19 20 21
|
isrrg |
⊢ ( 𝑥 ∈ ( RLReg ‘ ℤring ) ↔ ( 𝑥 ∈ ℤ ∧ ∀ 𝑦 ∈ ℤ ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
23 |
3 17 22
|
sylanbrc |
⊢ ( 𝑥 ∈ ( ℤ ∖ { 0 } ) → 𝑥 ∈ ( RLReg ‘ ℤring ) ) |
24 |
23
|
ssriv |
⊢ ( ℤ ∖ { 0 } ) ⊆ ( RLReg ‘ ℤring ) |
25 |
19 18 21
|
isdomn2 |
⊢ ( ℤring ∈ Domn ↔ ( ℤring ∈ NzRing ∧ ( ℤ ∖ { 0 } ) ⊆ ( RLReg ‘ ℤring ) ) ) |
26 |
2 24 25
|
mpbir2an |
⊢ ℤring ∈ Domn |
27 |
|
isidom |
⊢ ( ℤring ∈ IDomn ↔ ( ℤring ∈ CRing ∧ ℤring ∈ Domn ) ) |
28 |
1 26 27
|
mpbir2an |
⊢ ℤring ∈ IDomn |