| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 2 | 1 | negidd | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  +  - 𝐴 )  =  0 ) | 
						
							| 3 |  | zringgrp | ⊢ ℤring  ∈  Grp | 
						
							| 4 |  | id | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℤ ) | 
						
							| 5 |  | znegcl | ⊢ ( 𝐴  ∈  ℤ  →  - 𝐴  ∈  ℤ ) | 
						
							| 6 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 7 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 8 |  | zring0 | ⊢ 0  =  ( 0g ‘ ℤring ) | 
						
							| 9 |  | eqid | ⊢ ( invg ‘ ℤring )  =  ( invg ‘ ℤring ) | 
						
							| 10 | 6 7 8 9 | grpinvid1 | ⊢ ( ( ℤring  ∈  Grp  ∧  𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℤ )  →  ( ( ( invg ‘ ℤring ) ‘ 𝐴 )  =  - 𝐴  ↔  ( 𝐴  +  - 𝐴 )  =  0 ) ) | 
						
							| 11 | 3 4 5 10 | mp3an2i | ⊢ ( 𝐴  ∈  ℤ  →  ( ( ( invg ‘ ℤring ) ‘ 𝐴 )  =  - 𝐴  ↔  ( 𝐴  +  - 𝐴 )  =  0 ) ) | 
						
							| 12 | 2 11 | mpbird | ⊢ ( 𝐴  ∈  ℤ  →  ( ( invg ‘ ℤring ) ‘ 𝐴 )  =  - 𝐴 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝐴  ∈  ℤ  →  - 𝐴  =  ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |