Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
2 |
1
|
negidd |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + - 𝐴 ) = 0 ) |
3 |
|
zringgrp |
⊢ ℤring ∈ Grp |
4 |
|
id |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ ) |
5 |
|
znegcl |
⊢ ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ ) |
6 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
7 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
8 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
9 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
10 |
6 7 8 9
|
grpinvid1 |
⊢ ( ( ℤring ∈ Grp ∧ 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℤ ) → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
11 |
3 4 5 10
|
mp3an2i |
⊢ ( 𝐴 ∈ ℤ → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
12 |
2 11
|
mpbird |
⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ) |
13 |
12
|
eqcomd |
⊢ ( 𝐴 ∈ ℤ → - 𝐴 = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |