Step |
Hyp |
Ref |
Expression |
1 |
|
zringring |
⊢ ℤring ∈ Ring |
2 |
|
eleq1 |
⊢ ( 𝑥 = { 0 } → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ { 0 } ∈ ( LPIdeal ‘ ℤring ) ) ) |
3 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → 𝑥 ∈ ( LIdeal ‘ ℤring ) ) |
4 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → 𝑥 ≠ { 0 } ) |
5 |
|
eqid |
⊢ inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) = inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) |
6 |
3 4 5
|
zringlpirlem2 |
⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∈ 𝑥 ) |
7 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ ( LIdeal ‘ ℤring ) ) |
8 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ≠ { 0 } ) |
9 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) |
10 |
7 8 5 9
|
zringlpirlem3 |
⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) |
11 |
10
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → ∀ 𝑧 ∈ 𝑥 inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) |
12 |
|
breq1 |
⊢ ( 𝑦 = inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) → ( 𝑦 ∥ 𝑧 ↔ inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑦 = inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) → ( ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ↔ ∀ 𝑧 ∈ 𝑥 inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) ) |
14 |
13
|
rspcev |
⊢ ( ( inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) |
15 |
6 11 14
|
syl2anc |
⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) |
16 |
|
eqid |
⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) |
17 |
|
eqid |
⊢ ( LPIdeal ‘ ℤring ) = ( LPIdeal ‘ ℤring ) |
18 |
|
dvdsrzring |
⊢ ∥ = ( ∥r ‘ ℤring ) |
19 |
16 17 18
|
lpigen |
⊢ ( ( ℤring ∈ Ring ∧ 𝑥 ∈ ( LIdeal ‘ ℤring ) ) → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) ) |
20 |
1 19
|
mpan |
⊢ ( 𝑥 ∈ ( LIdeal ‘ ℤring ) → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) ) |
22 |
15 21
|
mpbird |
⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → 𝑥 ∈ ( LPIdeal ‘ ℤring ) ) |
23 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
24 |
17 23
|
lpi0 |
⊢ ( ℤring ∈ Ring → { 0 } ∈ ( LPIdeal ‘ ℤring ) ) |
25 |
1 24
|
mp1i |
⊢ ( 𝑥 ∈ ( LIdeal ‘ ℤring ) → { 0 } ∈ ( LPIdeal ‘ ℤring ) ) |
26 |
2 22 25
|
pm2.61ne |
⊢ ( 𝑥 ∈ ( LIdeal ‘ ℤring ) → 𝑥 ∈ ( LPIdeal ‘ ℤring ) ) |
27 |
26
|
ssriv |
⊢ ( LIdeal ‘ ℤring ) ⊆ ( LPIdeal ‘ ℤring ) |
28 |
17 16
|
islpir2 |
⊢ ( ℤring ∈ LPIR ↔ ( ℤring ∈ Ring ∧ ( LIdeal ‘ ℤring ) ⊆ ( LPIdeal ‘ ℤring ) ) ) |
29 |
1 27 28
|
mpbir2an |
⊢ ℤring ∈ LPIR |