Step |
Hyp |
Ref |
Expression |
1 |
|
zringlpirlem.i |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) |
2 |
|
zringlpirlem.n0 |
⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) |
3 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → 𝑎 ∈ 𝐼 ) |
4 |
|
eleq1 |
⊢ ( ( abs ‘ 𝑎 ) = 𝑎 → ( ( abs ‘ 𝑎 ) ∈ 𝐼 ↔ 𝑎 ∈ 𝐼 ) ) |
5 |
3 4
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( ( abs ‘ 𝑎 ) = 𝑎 → ( abs ‘ 𝑎 ) ∈ 𝐼 ) ) |
6 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
7 |
|
subrgsubg |
⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) |
8 |
6 7
|
ax-mp |
⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
9 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
10 |
|
eqid |
⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) |
11 |
9 10
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ ℤring ) → 𝐼 ⊆ ℤ ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ ℤ ) |
13 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ ℤ ) |
14 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
15 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
16 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
17 |
14 15 16
|
subginv |
⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑎 ∈ ℤ ) → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = ( ( invg ‘ ℤring ) ‘ 𝑎 ) ) |
18 |
8 13 17
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = ( ( invg ‘ ℤring ) ‘ 𝑎 ) ) |
19 |
13
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ ℂ ) |
20 |
|
cnfldneg |
⊢ ( 𝑎 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = - 𝑎 ) |
21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = - 𝑎 ) |
22 |
18 21
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℤring ) ‘ 𝑎 ) = - 𝑎 ) |
23 |
|
zringring |
⊢ ℤring ∈ Ring |
24 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ 𝐼 ) |
26 |
10 16
|
lidlnegcl |
⊢ ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℤring ) ‘ 𝑎 ) ∈ 𝐼 ) |
27 |
23 24 25 26
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℤring ) ‘ 𝑎 ) ∈ 𝐼 ) |
28 |
22 27
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → - 𝑎 ∈ 𝐼 ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → - 𝑎 ∈ 𝐼 ) |
30 |
|
eleq1 |
⊢ ( ( abs ‘ 𝑎 ) = - 𝑎 → ( ( abs ‘ 𝑎 ) ∈ 𝐼 ↔ - 𝑎 ∈ 𝐼 ) ) |
31 |
29 30
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( ( abs ‘ 𝑎 ) = - 𝑎 → ( abs ‘ 𝑎 ) ∈ 𝐼 ) ) |
32 |
13
|
zred |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ ℝ ) |
33 |
32
|
absord |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( abs ‘ 𝑎 ) = 𝑎 ∨ ( abs ‘ 𝑎 ) = - 𝑎 ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( ( abs ‘ 𝑎 ) = 𝑎 ∨ ( abs ‘ 𝑎 ) = - 𝑎 ) ) |
35 |
5 31 34
|
mpjaod |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ 𝐼 ) |
36 |
|
nnabscl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ℕ ) |
37 |
13 36
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ℕ ) |
38 |
35 37
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ( 𝐼 ∩ ℕ ) ) |
39 |
38
|
ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |
40 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
41 |
10 40
|
lidlnz |
⊢ ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑎 ∈ 𝐼 𝑎 ≠ 0 ) |
42 |
23 1 2 41
|
mp3an2i |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐼 𝑎 ≠ 0 ) |
43 |
39 42
|
r19.29a |
⊢ ( 𝜑 → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |