| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringlpirlem.i |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) |
| 2 |
|
zringlpirlem.n0 |
⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) |
| 3 |
|
zringlpirlem.g |
⊢ 𝐺 = inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) |
| 4 |
|
inss2 |
⊢ ( 𝐼 ∩ ℕ ) ⊆ ℕ |
| 5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 6 |
4 5
|
sseqtri |
⊢ ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) |
| 7 |
1 2
|
zringlpirlem1 |
⊢ ( 𝜑 → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |
| 8 |
|
infssuzcl |
⊢ ( ( ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) ∧ ( 𝐼 ∩ ℕ ) ≠ ∅ ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 9 |
6 7 8
|
sylancr |
⊢ ( 𝜑 → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 10 |
9
|
elin1d |
⊢ ( 𝜑 → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ 𝐼 ) |
| 11 |
3 10
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ 𝐼 ) |