| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringlpirlem.i |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) |
| 2 |
|
zringlpirlem.n0 |
⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) |
| 3 |
|
zringlpirlem.g |
⊢ 𝐺 = inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) |
| 4 |
|
zringlpirlem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 5 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 6 |
|
eqid |
⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) |
| 7 |
5 6
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ ℤring ) → 𝐼 ⊆ ℤ ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ ℤ ) |
| 9 |
8 4
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
| 10 |
9
|
zred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 11 |
|
inss2 |
⊢ ( 𝐼 ∩ ℕ ) ⊆ ℕ |
| 12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 13 |
11 12
|
sseqtri |
⊢ ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) |
| 14 |
1 2
|
zringlpirlem1 |
⊢ ( 𝜑 → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |
| 15 |
|
infssuzcl |
⊢ ( ( ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) ∧ ( 𝐼 ∩ ℕ ) ≠ ∅ ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 16 |
13 14 15
|
sylancr |
⊢ ( 𝜑 → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 17 |
3 16
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐼 ∩ ℕ ) ) |
| 18 |
17
|
elin2d |
⊢ ( 𝜑 → 𝐺 ∈ ℕ ) |
| 19 |
18
|
nnrpd |
⊢ ( 𝜑 → 𝐺 ∈ ℝ+ ) |
| 20 |
|
modlt |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+ ) → ( 𝑋 mod 𝐺 ) < 𝐺 ) |
| 21 |
10 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) < 𝐺 ) |
| 22 |
9 18
|
zmodcld |
⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) ∈ ℕ0 ) |
| 23 |
22
|
nn0red |
⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) ∈ ℝ ) |
| 24 |
18
|
nnred |
⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
| 25 |
23 24
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑋 mod 𝐺 ) < 𝐺 ↔ ¬ 𝐺 ≤ ( 𝑋 mod 𝐺 ) ) ) |
| 26 |
21 25
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐺 ≤ ( 𝑋 mod 𝐺 ) ) |
| 27 |
9
|
zcnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 28 |
18
|
nncnd |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 29 |
10 18
|
nndivred |
⊢ ( 𝜑 → ( 𝑋 / 𝐺 ) ∈ ℝ ) |
| 30 |
29
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℤ ) |
| 31 |
30
|
zcnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℂ ) |
| 32 |
28 31
|
mulcld |
⊢ ( 𝜑 → ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ∈ ℂ ) |
| 33 |
27 32
|
negsubd |
⊢ ( 𝜑 → ( 𝑋 + - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) = ( 𝑋 − ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) |
| 34 |
30
|
znegcld |
⊢ ( 𝜑 → - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℤ ) |
| 35 |
34
|
zcnd |
⊢ ( 𝜑 → - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℂ ) |
| 36 |
35 28
|
mulcomd |
⊢ ( 𝜑 → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) = ( 𝐺 · - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) |
| 37 |
28 31
|
mulneg2d |
⊢ ( 𝜑 → ( 𝐺 · - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) = - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) |
| 38 |
36 37
|
eqtrd |
⊢ ( 𝜑 → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) = - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) = ( 𝑋 + - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) |
| 40 |
|
modval |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+ ) → ( 𝑋 mod 𝐺 ) = ( 𝑋 − ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) |
| 41 |
10 19 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) = ( 𝑋 − ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) |
| 42 |
33 39 41
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) = ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) ) |
| 43 |
|
zringring |
⊢ ℤring ∈ Ring |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → ℤring ∈ Ring ) |
| 45 |
1 2 3
|
zringlpirlem2 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐼 ) |
| 46 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
| 47 |
6 5 46
|
lidlmcl |
⊢ ( ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ) ∧ ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℤ ∧ 𝐺 ∈ 𝐼 ) ) → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ∈ 𝐼 ) |
| 48 |
44 1 34 45 47
|
syl22anc |
⊢ ( 𝜑 → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ∈ 𝐼 ) |
| 49 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
| 50 |
6 49
|
lidlacl |
⊢ ( ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ∈ 𝐼 ) ) → ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) ∈ 𝐼 ) |
| 51 |
44 1 4 48 50
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) ∈ 𝐼 ) |
| 52 |
42 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) ∈ 𝐼 ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → ( 𝑋 mod 𝐺 ) ∈ 𝐼 ) |
| 54 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → ( 𝑋 mod 𝐺 ) ∈ ℕ ) |
| 55 |
53 54
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → ( 𝑋 mod 𝐺 ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 56 |
|
infssuzle |
⊢ ( ( ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) ∧ ( 𝑋 mod 𝐺 ) ∈ ( 𝐼 ∩ ℕ ) ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ≤ ( 𝑋 mod 𝐺 ) ) |
| 57 |
13 55 56
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ≤ ( 𝑋 mod 𝐺 ) ) |
| 58 |
3 57
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → 𝐺 ≤ ( 𝑋 mod 𝐺 ) ) |
| 59 |
26 58
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑋 mod 𝐺 ) ∈ ℕ ) |
| 60 |
|
elnn0 |
⊢ ( ( 𝑋 mod 𝐺 ) ∈ ℕ0 ↔ ( ( 𝑋 mod 𝐺 ) ∈ ℕ ∨ ( 𝑋 mod 𝐺 ) = 0 ) ) |
| 61 |
22 60
|
sylib |
⊢ ( 𝜑 → ( ( 𝑋 mod 𝐺 ) ∈ ℕ ∨ ( 𝑋 mod 𝐺 ) = 0 ) ) |
| 62 |
|
orel1 |
⊢ ( ¬ ( 𝑋 mod 𝐺 ) ∈ ℕ → ( ( ( 𝑋 mod 𝐺 ) ∈ ℕ ∨ ( 𝑋 mod 𝐺 ) = 0 ) → ( 𝑋 mod 𝐺 ) = 0 ) ) |
| 63 |
59 61 62
|
sylc |
⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) = 0 ) |
| 64 |
|
dvdsval3 |
⊢ ( ( 𝐺 ∈ ℕ ∧ 𝑋 ∈ ℤ ) → ( 𝐺 ∥ 𝑋 ↔ ( 𝑋 mod 𝐺 ) = 0 ) ) |
| 65 |
18 9 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∥ 𝑋 ↔ ( 𝑋 mod 𝐺 ) = 0 ) ) |
| 66 |
63 65
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∥ 𝑋 ) |