| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zringlpirlem.i | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ ℤring ) ) | 
						
							| 2 |  | zringlpirlem.n0 | ⊢ ( 𝜑  →  𝐼  ≠  { 0 } ) | 
						
							| 3 |  | zringlpirlem.g | ⊢ 𝐺  =  inf ( ( 𝐼  ∩  ℕ ) ,  ℝ ,   <  ) | 
						
							| 4 |  | zringlpirlem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐼 ) | 
						
							| 5 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 6 |  | eqid | ⊢ ( LIdeal ‘ ℤring )  =  ( LIdeal ‘ ℤring ) | 
						
							| 7 | 5 6 | lidlss | ⊢ ( 𝐼  ∈  ( LIdeal ‘ ℤring )  →  𝐼  ⊆  ℤ ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝐼  ⊆  ℤ ) | 
						
							| 9 | 8 4 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 10 | 9 | zred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 11 |  | inss2 | ⊢ ( 𝐼  ∩  ℕ )  ⊆  ℕ | 
						
							| 12 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 13 | 11 12 | sseqtri | ⊢ ( 𝐼  ∩  ℕ )  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 14 | 1 2 | zringlpirlem1 | ⊢ ( 𝜑  →  ( 𝐼  ∩  ℕ )  ≠  ∅ ) | 
						
							| 15 |  | infssuzcl | ⊢ ( ( ( 𝐼  ∩  ℕ )  ⊆  ( ℤ≥ ‘ 1 )  ∧  ( 𝐼  ∩  ℕ )  ≠  ∅ )  →  inf ( ( 𝐼  ∩  ℕ ) ,  ℝ ,   <  )  ∈  ( 𝐼  ∩  ℕ ) ) | 
						
							| 16 | 13 14 15 | sylancr | ⊢ ( 𝜑  →  inf ( ( 𝐼  ∩  ℕ ) ,  ℝ ,   <  )  ∈  ( 𝐼  ∩  ℕ ) ) | 
						
							| 17 | 3 16 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐼  ∩  ℕ ) ) | 
						
							| 18 | 17 | elin2d | ⊢ ( 𝜑  →  𝐺  ∈  ℕ ) | 
						
							| 19 | 18 | nnrpd | ⊢ ( 𝜑  →  𝐺  ∈  ℝ+ ) | 
						
							| 20 |  | modlt | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝐺  ∈  ℝ+ )  →  ( 𝑋  mod  𝐺 )  <  𝐺 ) | 
						
							| 21 | 10 19 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  mod  𝐺 )  <  𝐺 ) | 
						
							| 22 | 9 18 | zmodcld | ⊢ ( 𝜑  →  ( 𝑋  mod  𝐺 )  ∈  ℕ0 ) | 
						
							| 23 | 22 | nn0red | ⊢ ( 𝜑  →  ( 𝑋  mod  𝐺 )  ∈  ℝ ) | 
						
							| 24 | 18 | nnred | ⊢ ( 𝜑  →  𝐺  ∈  ℝ ) | 
						
							| 25 | 23 24 | ltnled | ⊢ ( 𝜑  →  ( ( 𝑋  mod  𝐺 )  <  𝐺  ↔  ¬  𝐺  ≤  ( 𝑋  mod  𝐺 ) ) ) | 
						
							| 26 | 21 25 | mpbid | ⊢ ( 𝜑  →  ¬  𝐺  ≤  ( 𝑋  mod  𝐺 ) ) | 
						
							| 27 | 9 | zcnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 28 | 18 | nncnd | ⊢ ( 𝜑  →  𝐺  ∈  ℂ ) | 
						
							| 29 | 10 18 | nndivred | ⊢ ( 𝜑  →  ( 𝑋  /  𝐺 )  ∈  ℝ ) | 
						
							| 30 | 29 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ∈  ℤ ) | 
						
							| 31 | 30 | zcnd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ∈  ℂ ) | 
						
							| 32 | 28 31 | mulcld | ⊢ ( 𝜑  →  ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) )  ∈  ℂ ) | 
						
							| 33 | 27 32 | negsubd | ⊢ ( 𝜑  →  ( 𝑋  +  - ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) )  =  ( 𝑋  −  ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) ) ) | 
						
							| 34 | 30 | znegcld | ⊢ ( 𝜑  →  - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ∈  ℤ ) | 
						
							| 35 | 34 | zcnd | ⊢ ( 𝜑  →  - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ∈  ℂ ) | 
						
							| 36 | 35 28 | mulcomd | ⊢ ( 𝜑  →  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 )  =  ( 𝐺  ·  - ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) ) | 
						
							| 37 | 28 31 | mulneg2d | ⊢ ( 𝜑  →  ( 𝐺  ·  - ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) )  =  - ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) ) | 
						
							| 38 | 36 37 | eqtrd | ⊢ ( 𝜑  →  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 )  =  - ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝜑  →  ( 𝑋  +  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 ) )  =  ( 𝑋  +  - ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) ) ) | 
						
							| 40 |  | modval | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝐺  ∈  ℝ+ )  →  ( 𝑋  mod  𝐺 )  =  ( 𝑋  −  ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) ) ) | 
						
							| 41 | 10 19 40 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  mod  𝐺 )  =  ( 𝑋  −  ( 𝐺  ·  ( ⌊ ‘ ( 𝑋  /  𝐺 ) ) ) ) ) | 
						
							| 42 | 33 39 41 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝑋  mod  𝐺 )  =  ( 𝑋  +  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 ) ) ) | 
						
							| 43 |  | zringring | ⊢ ℤring  ∈  Ring | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  ℤring  ∈  Ring ) | 
						
							| 45 | 1 2 3 | zringlpirlem2 | ⊢ ( 𝜑  →  𝐺  ∈  𝐼 ) | 
						
							| 46 |  | zringmulr | ⊢  ·   =  ( .r ‘ ℤring ) | 
						
							| 47 | 6 5 46 | lidlmcl | ⊢ ( ( ( ℤring  ∈  Ring  ∧  𝐼  ∈  ( LIdeal ‘ ℤring ) )  ∧  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ∈  ℤ  ∧  𝐺  ∈  𝐼 ) )  →  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 )  ∈  𝐼 ) | 
						
							| 48 | 44 1 34 45 47 | syl22anc | ⊢ ( 𝜑  →  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 )  ∈  𝐼 ) | 
						
							| 49 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 50 | 6 49 | lidlacl | ⊢ ( ( ( ℤring  ∈  Ring  ∧  𝐼  ∈  ( LIdeal ‘ ℤring ) )  ∧  ( 𝑋  ∈  𝐼  ∧  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 )  ∈  𝐼 ) )  →  ( 𝑋  +  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 ) )  ∈  𝐼 ) | 
						
							| 51 | 44 1 4 48 50 | syl22anc | ⊢ ( 𝜑  →  ( 𝑋  +  ( - ( ⌊ ‘ ( 𝑋  /  𝐺 ) )  ·  𝐺 ) )  ∈  𝐼 ) | 
						
							| 52 | 42 51 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑋  mod  𝐺 )  ∈  𝐼 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  mod  𝐺 )  ∈  ℕ )  →  ( 𝑋  mod  𝐺 )  ∈  𝐼 ) | 
						
							| 54 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋  mod  𝐺 )  ∈  ℕ )  →  ( 𝑋  mod  𝐺 )  ∈  ℕ ) | 
						
							| 55 | 53 54 | elind | ⊢ ( ( 𝜑  ∧  ( 𝑋  mod  𝐺 )  ∈  ℕ )  →  ( 𝑋  mod  𝐺 )  ∈  ( 𝐼  ∩  ℕ ) ) | 
						
							| 56 |  | infssuzle | ⊢ ( ( ( 𝐼  ∩  ℕ )  ⊆  ( ℤ≥ ‘ 1 )  ∧  ( 𝑋  mod  𝐺 )  ∈  ( 𝐼  ∩  ℕ ) )  →  inf ( ( 𝐼  ∩  ℕ ) ,  ℝ ,   <  )  ≤  ( 𝑋  mod  𝐺 ) ) | 
						
							| 57 | 13 55 56 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑋  mod  𝐺 )  ∈  ℕ )  →  inf ( ( 𝐼  ∩  ℕ ) ,  ℝ ,   <  )  ≤  ( 𝑋  mod  𝐺 ) ) | 
						
							| 58 | 3 57 | eqbrtrid | ⊢ ( ( 𝜑  ∧  ( 𝑋  mod  𝐺 )  ∈  ℕ )  →  𝐺  ≤  ( 𝑋  mod  𝐺 ) ) | 
						
							| 59 | 26 58 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝑋  mod  𝐺 )  ∈  ℕ ) | 
						
							| 60 |  | elnn0 | ⊢ ( ( 𝑋  mod  𝐺 )  ∈  ℕ0  ↔  ( ( 𝑋  mod  𝐺 )  ∈  ℕ  ∨  ( 𝑋  mod  𝐺 )  =  0 ) ) | 
						
							| 61 | 22 60 | sylib | ⊢ ( 𝜑  →  ( ( 𝑋  mod  𝐺 )  ∈  ℕ  ∨  ( 𝑋  mod  𝐺 )  =  0 ) ) | 
						
							| 62 |  | orel1 | ⊢ ( ¬  ( 𝑋  mod  𝐺 )  ∈  ℕ  →  ( ( ( 𝑋  mod  𝐺 )  ∈  ℕ  ∨  ( 𝑋  mod  𝐺 )  =  0 )  →  ( 𝑋  mod  𝐺 )  =  0 ) ) | 
						
							| 63 | 59 61 62 | sylc | ⊢ ( 𝜑  →  ( 𝑋  mod  𝐺 )  =  0 ) | 
						
							| 64 |  | dvdsval3 | ⊢ ( ( 𝐺  ∈  ℕ  ∧  𝑋  ∈  ℤ )  →  ( 𝐺  ∥  𝑋  ↔  ( 𝑋  mod  𝐺 )  =  0 ) ) | 
						
							| 65 | 18 9 64 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∥  𝑋  ↔  ( 𝑋  mod  𝐺 )  =  0 ) ) | 
						
							| 66 | 63 65 | mpbird | ⊢ ( 𝜑  →  𝐺  ∥  𝑋 ) |