Metamath Proof Explorer


Theorem zringmpg

Description: The multiplication group of the ring of integers is the restriction of the multiplication group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019)

Ref Expression
Assertion zringmpg ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring )

Proof

Step Hyp Ref Expression
1 cndrng fld ∈ DivRing
2 zex ℤ ∈ V
3 df-zring ring = ( ℂflds ℤ )
4 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
5 3 4 mgpress ( ( ℂfld ∈ DivRing ∧ ℤ ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring ) )
6 1 2 5 mp2an ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring )