Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
2 |
|
zaddcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
3 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
4 |
|
1z |
⊢ 1 ∈ ℤ |
5 |
1 2 3 4
|
cnsubglem |
⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
6 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
7 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
8 |
|
eqid |
⊢ ( .g ‘ ℤring ) = ( .g ‘ ℤring ) |
9 |
6 7 8
|
subgmulg |
⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) |
10 |
5 9
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) |
11 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
12 |
11
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
13 |
|
cnfldmulg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
14 |
12 13
|
syldan |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
15 |
10 14
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |