| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 2 |  | zaddcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  +  𝑦 )  ∈  ℤ ) | 
						
							| 3 |  | znegcl | ⊢ ( 𝑥  ∈  ℤ  →  - 𝑥  ∈  ℤ ) | 
						
							| 4 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 5 | 1 2 3 4 | cnsubglem | ⊢ ℤ  ∈  ( SubGrp ‘ ℂfld ) | 
						
							| 6 |  | eqid | ⊢ ( .g ‘ ℂfld )  =  ( .g ‘ ℂfld ) | 
						
							| 7 |  | df-zring | ⊢ ℤring  =  ( ℂfld  ↾s  ℤ ) | 
						
							| 8 |  | eqid | ⊢ ( .g ‘ ℤring )  =  ( .g ‘ ℤring ) | 
						
							| 9 | 6 7 8 | subgmulg | ⊢ ( ( ℤ  ∈  ( SubGrp ‘ ℂfld )  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ( .g ‘ ℂfld ) 𝐵 )  =  ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) | 
						
							| 10 | 5 9 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ( .g ‘ ℂfld ) 𝐵 )  =  ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐵  ∈  ℤ ) | 
						
							| 12 | 11 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐵  ∈  ℂ ) | 
						
							| 13 |  | cnfldmulg | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ( .g ‘ ℂfld ) 𝐵 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 14 | 12 13 | syldan | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ( .g ‘ ℂfld ) 𝐵 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 15 | 10 14 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ( .g ‘ ℤring ) 𝐵 )  =  ( 𝐴  ·  𝐵 ) ) |