Step |
Hyp |
Ref |
Expression |
1 |
|
1ne2 |
⊢ 1 ≠ 2 |
2 |
1
|
nesymi |
⊢ ¬ 2 = 1 |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
|
0le2 |
⊢ 0 ≤ 2 |
5 |
|
absid |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) |
6 |
3 4 5
|
mp2an |
⊢ ( abs ‘ 2 ) = 2 |
7 |
6
|
eqeq1i |
⊢ ( ( abs ‘ 2 ) = 1 ↔ 2 = 1 ) |
8 |
2 7
|
mtbir |
⊢ ¬ ( abs ‘ 2 ) = 1 |
9 |
8
|
intnan |
⊢ ¬ ( 2 ∈ ℤ ∧ ( abs ‘ 2 ) = 1 ) |
10 |
|
zringunit |
⊢ ( 2 ∈ ( Unit ‘ ℤring ) ↔ ( 2 ∈ ℤ ∧ ( abs ‘ 2 ) = 1 ) ) |
11 |
9 10
|
mtbir |
⊢ ¬ 2 ∈ ( Unit ‘ ℤring ) |
12 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
13 |
|
eqid |
⊢ ( Unit ‘ ℤring ) = ( Unit ‘ ℤring ) |
14 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
15 |
12 13 14
|
isdrng |
⊢ ( ℤring ∈ DivRing ↔ ( ℤring ∈ Ring ∧ ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) ) ) |
16 |
|
2z |
⊢ 2 ∈ ℤ |
17 |
|
2ne0 |
⊢ 2 ≠ 0 |
18 |
|
eldifsn |
⊢ ( 2 ∈ ( ℤ ∖ { 0 } ) ↔ ( 2 ∈ ℤ ∧ 2 ≠ 0 ) ) |
19 |
16 17 18
|
mpbir2an |
⊢ 2 ∈ ( ℤ ∖ { 0 } ) |
20 |
|
id |
⊢ ( ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) → ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) ) |
21 |
19 20
|
eleqtrrid |
⊢ ( ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) → 2 ∈ ( Unit ‘ ℤring ) ) |
22 |
15 21
|
simplbiim |
⊢ ( ℤring ∈ DivRing → 2 ∈ ( Unit ‘ ℤring ) ) |
23 |
11 22
|
mto |
⊢ ¬ ℤring ∈ DivRing |
24 |
23
|
nelir |
⊢ ℤring ∉ DivRing |