Metamath Proof Explorer


Theorem zringnrg

Description: The ring of integers is a normed ring. (Contributed by AV, 13-Jun-2019)

Ref Expression
Assertion zringnrg ring ∈ NrmRing

Proof

Step Hyp Ref Expression
1 cnnrg fld ∈ NrmRing
2 zsubrg ℤ ∈ ( SubRing ‘ ℂfld )
3 df-zring ring = ( ℂflds ℤ )
4 3 subrgnrg ( ( ℂfld ∈ NrmRing ∧ ℤ ∈ ( SubRing ‘ ℂfld ) ) → ℤring ∈ NrmRing )
5 1 2 4 mp2an ring ∈ NrmRing