Metamath Proof Explorer


Theorem zringnzr

Description: The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020)

Ref Expression
Assertion zringnzr ring ∈ NzRing

Proof

Step Hyp Ref Expression
1 zringring ring ∈ Ring
2 ax-1ne0 1 ≠ 0
3 zring1 1 = ( 1r ‘ ℤring )
4 zring0 0 = ( 0g ‘ ℤring )
5 3 4 isnzr ( ℤring ∈ NzRing ↔ ( ℤring ∈ Ring ∧ 1 ≠ 0 ) )
6 1 2 5 mpbir2an ring ∈ NzRing