Metamath Proof Explorer


Theorem zringpid

Description: The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Assertion zringpid ring ∈ PID

Proof

Step Hyp Ref Expression
1 zringidom ring ∈ IDomn
2 zringlpir ring ∈ LPIR
3 1 2 elini ring ∈ ( IDomn ∩ LPIR )
4 df-pid PID = ( IDomn ∩ LPIR )
5 3 4 eleqtrri ring ∈ PID