Description: The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | zringpid | ⊢ ℤring ∈ PID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringidom | ⊢ ℤring ∈ IDomn | |
2 | zringlpir | ⊢ ℤring ∈ LPIR | |
3 | 1 2 | elini | ⊢ ℤring ∈ ( IDomn ∩ LPIR ) |
4 | df-pid | ⊢ PID = ( IDomn ∩ LPIR ) | |
5 | 3 4 | eleqtrri | ⊢ ℤring ∈ PID |