Metamath Proof Explorer


Theorem zringsub

Description: The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025)

Ref Expression
Hypothesis zringsub.p = ( -g ‘ ℤring )
Assertion zringsub ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 𝑌 ) = ( 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 zringsub.p = ( -g ‘ ℤring )
2 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
3 zaddcl ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ )
4 znegcl ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ )
5 0z 0 ∈ ℤ
6 2 3 4 5 cnsubglem ℤ ∈ ( SubGrp ‘ ℂfld )
7 cnfldsub − = ( -g ‘ ℂfld )
8 df-zring ring = ( ℂflds ℤ )
9 7 8 1 subgsub ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )
10 6 9 mp3an1 ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )
11 10 eqcomd ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 𝑌 ) = ( 𝑋𝑌 ) )