Description: The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zringsub.p | ⊢ − = ( -g ‘ ℤring ) | |
| Assertion | zringsub | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringsub.p | ⊢ − = ( -g ‘ ℤring ) | |
| 2 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 3 | zaddcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) | |
| 4 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 5 | 0z | ⊢ 0 ∈ ℤ | |
| 6 | 2 3 4 5 | cnsubglem | ⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
| 7 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
| 8 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 9 | 7 8 1 | subgsub | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
| 10 | 6 9 | mp3an1 | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
| 11 | 10 | eqcomd | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |