Metamath Proof Explorer


Theorem zringsubgval

Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019)

Ref Expression
Hypothesis zringsubgval.m = ( -g ‘ ℤring )
Assertion zringsubgval ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )

Proof

Step Hyp Ref Expression
1 zringsubgval.m = ( -g ‘ ℤring )
2 zsubrg ℤ ∈ ( SubRing ‘ ℂfld )
3 subrgsubg ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) )
4 2 3 ax-mp ℤ ∈ ( SubGrp ‘ ℂfld )
5 cnfldsub − = ( -g ‘ ℂfld )
6 df-zring ring = ( ℂflds ℤ )
7 5 6 1 subgsub ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )
8 4 7 mp3an1 ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )