Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zringsubgval.m | ⊢ − = ( -g ‘ ℤring ) | |
| Assertion | zringsubgval | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zringsubgval.m | ⊢ − = ( -g ‘ ℤring ) | |
| 2 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 3 | subrgsubg | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) | 
| 5 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
| 6 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 7 | 5 6 1 | subgsub | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) | 
| 8 | 4 7 | mp3an1 | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |