Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | zringsubgval.m | ⊢ − = ( -g ‘ ℤring ) | |
Assertion | zringsubgval | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringsubgval.m | ⊢ − = ( -g ‘ ℤring ) | |
2 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
3 | subrgsubg | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) | |
4 | 2 3 | ax-mp | ⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
5 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
6 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
7 | 5 6 1 | subgsub | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
8 | 4 7 | mp3an1 | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |