| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 2 |  | eqid | ⊢ ( Unit ‘ ℤring )  =  ( Unit ‘ ℤring ) | 
						
							| 3 | 1 2 | unitcl | ⊢ ( 𝐴  ∈  ( Unit ‘ ℤring )  →  𝐴  ∈  ℤ ) | 
						
							| 4 |  | zsubrg | ⊢ ℤ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 5 |  | zgz | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℤ[i] ) | 
						
							| 6 | 5 | ssriv | ⊢ ℤ  ⊆  ℤ[i] | 
						
							| 7 |  | gzsubrg | ⊢ ℤ[i]  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 8 |  | eqid | ⊢ ( ℂfld  ↾s  ℤ[i] )  =  ( ℂfld  ↾s  ℤ[i] ) | 
						
							| 9 | 8 | subsubrg | ⊢ ( ℤ[i]  ∈  ( SubRing ‘ ℂfld )  →  ( ℤ  ∈  ( SubRing ‘ ( ℂfld  ↾s  ℤ[i] ) )  ↔  ( ℤ  ∈  ( SubRing ‘ ℂfld )  ∧  ℤ  ⊆  ℤ[i] ) ) ) | 
						
							| 10 | 7 9 | ax-mp | ⊢ ( ℤ  ∈  ( SubRing ‘ ( ℂfld  ↾s  ℤ[i] ) )  ↔  ( ℤ  ∈  ( SubRing ‘ ℂfld )  ∧  ℤ  ⊆  ℤ[i] ) ) | 
						
							| 11 | 4 6 10 | mpbir2an | ⊢ ℤ  ∈  ( SubRing ‘ ( ℂfld  ↾s  ℤ[i] ) ) | 
						
							| 12 |  | df-zring | ⊢ ℤring  =  ( ℂfld  ↾s  ℤ ) | 
						
							| 13 |  | ressabs | ⊢ ( ( ℤ[i]  ∈  ( SubRing ‘ ℂfld )  ∧  ℤ  ⊆  ℤ[i] )  →  ( ( ℂfld  ↾s  ℤ[i] )  ↾s  ℤ )  =  ( ℂfld  ↾s  ℤ ) ) | 
						
							| 14 | 7 6 13 | mp2an | ⊢ ( ( ℂfld  ↾s  ℤ[i] )  ↾s  ℤ )  =  ( ℂfld  ↾s  ℤ ) | 
						
							| 15 | 12 14 | eqtr4i | ⊢ ℤring  =  ( ( ℂfld  ↾s  ℤ[i] )  ↾s  ℤ ) | 
						
							| 16 |  | eqid | ⊢ ( Unit ‘ ( ℂfld  ↾s  ℤ[i] ) )  =  ( Unit ‘ ( ℂfld  ↾s  ℤ[i] ) ) | 
						
							| 17 | 15 16 2 | subrguss | ⊢ ( ℤ  ∈  ( SubRing ‘ ( ℂfld  ↾s  ℤ[i] ) )  →  ( Unit ‘ ℤring )  ⊆  ( Unit ‘ ( ℂfld  ↾s  ℤ[i] ) ) ) | 
						
							| 18 | 11 17 | ax-mp | ⊢ ( Unit ‘ ℤring )  ⊆  ( Unit ‘ ( ℂfld  ↾s  ℤ[i] ) ) | 
						
							| 19 | 18 | sseli | ⊢ ( 𝐴  ∈  ( Unit ‘ ℤring )  →  𝐴  ∈  ( Unit ‘ ( ℂfld  ↾s  ℤ[i] ) ) ) | 
						
							| 20 | 8 | gzrngunit | ⊢ ( 𝐴  ∈  ( Unit ‘ ( ℂfld  ↾s  ℤ[i] ) )  ↔  ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 ) ) | 
						
							| 21 | 20 | simprbi | ⊢ ( 𝐴  ∈  ( Unit ‘ ( ℂfld  ↾s  ℤ[i] ) )  →  ( abs ‘ 𝐴 )  =  1 ) | 
						
							| 22 | 19 21 | syl | ⊢ ( 𝐴  ∈  ( Unit ‘ ℤring )  →  ( abs ‘ 𝐴 )  =  1 ) | 
						
							| 23 | 3 22 | jca | ⊢ ( 𝐴  ∈  ( Unit ‘ ℤring )  →  ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 ) ) | 
						
							| 24 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( abs ‘ 𝐴 )  =  1 ) | 
						
							| 27 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  1  ≠  0 ) | 
						
							| 29 | 26 28 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  ( abs ‘ 0 ) ) | 
						
							| 31 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 32 | 30 31 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  0 ) | 
						
							| 33 | 32 | necon3i | ⊢ ( ( abs ‘ 𝐴 )  ≠  0  →  𝐴  ≠  0 ) | 
						
							| 34 | 29 33 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ≠  0 ) | 
						
							| 35 |  | eldifsn | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 36 | 25 34 35 | sylanbrc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 37 |  | simpl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ℤ ) | 
						
							| 38 |  | cnfldinv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 39 | 25 34 38 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 40 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ℝ ) | 
						
							| 42 |  | absresq | ⊢ ( 𝐴  ∈  ℝ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 44 | 26 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 45 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 46 | 44 45 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  1 ) | 
						
							| 47 | 25 | sqvald | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) ) | 
						
							| 48 | 43 46 47 | 3eqtr3rd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( 𝐴  ·  𝐴 )  =  1 ) | 
						
							| 49 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  1  ∈  ℂ ) | 
						
							| 50 | 49 25 25 34 | divmuld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( 1  /  𝐴 )  =  𝐴  ↔  ( 𝐴  ·  𝐴 )  =  1 ) ) | 
						
							| 51 | 48 50 | mpbird | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( 1  /  𝐴 )  =  𝐴 ) | 
						
							| 52 | 39 51 | eqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 53 | 52 37 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 54 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 55 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 56 |  | cndrng | ⊢ ℂfld  ∈  DivRing | 
						
							| 57 | 54 55 56 | drngui | ⊢ ( ℂ  ∖  { 0 } )  =  ( Unit ‘ ℂfld ) | 
						
							| 58 |  | eqid | ⊢ ( invr ‘ ℂfld )  =  ( invr ‘ ℂfld ) | 
						
							| 59 | 12 57 2 58 | subrgunit | ⊢ ( ℤ  ∈  ( SubRing ‘ ℂfld )  →  ( 𝐴  ∈  ( Unit ‘ ℤring )  ↔  ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ∧  𝐴  ∈  ℤ  ∧  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  ∈  ℤ ) ) ) | 
						
							| 60 | 4 59 | ax-mp | ⊢ ( 𝐴  ∈  ( Unit ‘ ℤring )  ↔  ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ∧  𝐴  ∈  ℤ  ∧  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  ∈  ℤ ) ) | 
						
							| 61 | 36 37 53 60 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ( Unit ‘ ℤring ) ) | 
						
							| 62 | 23 61 | impbii | ⊢ ( 𝐴  ∈  ( Unit ‘ ℤring )  ↔  ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 ) ) |