| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zrinitorngc.u | 
							⊢ ( 𝜑  →  𝑈  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							zrinitorngc.c | 
							⊢ 𝐶  =  ( RngCat ‘ 𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							zrinitorngc.z | 
							⊢ ( 𝜑  →  𝑍  ∈  ( Ring  ∖  NzRing ) )  | 
						
						
							| 4 | 
							
								
							 | 
							zrinitorngc.e | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑈 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 6 | 
							
								2 5 1
							 | 
							rngcbas | 
							⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( 𝑈  ∩  Rng ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑟  ∈  ( Base ‘ 𝐶 )  ↔  𝑟  ∈  ( 𝑈  ∩  Rng ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑟  ∈  ( 𝑈  ∩  Rng )  ↔  ( 𝑟  ∈  𝑈  ∧  𝑟  ∈  Rng ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simprbi | 
							⊢ ( 𝑟  ∈  ( 𝑈  ∩  Rng )  →  𝑟  ∈  Rng )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							biimtrdi | 
							⊢ ( 𝜑  →  ( 𝑟  ∈  ( Base ‘ 𝐶 )  →  𝑟  ∈  Rng ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑟  ∈  Rng )  | 
						
						
							| 12 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑍  ∈  ( Ring  ∖  NzRing ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑟 )  =  ( 0g ‘ 𝑟 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							zrrnghm | 
							⊢ ( ( 𝑟  ∈  Rng  ∧  𝑍  ∈  ( Ring  ∖  NzRing ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  | 
						
						
							| 17 | 
							
								11 12 16
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  | 
						
						
							| 19 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑈  ∈  𝑉 )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 21 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑍  ∈  ( Ring  ∖  NzRing )  →  𝑍  ∈  Ring )  | 
						
						
							| 22 | 
							
								
							 | 
							ringrng | 
							⊢ ( 𝑍  ∈  Ring  →  𝑍  ∈  Rng )  | 
						
						
							| 23 | 
							
								3 21 22
							 | 
							3syl | 
							⊢ ( 𝜑  →  𝑍  ∈  Rng )  | 
						
						
							| 24 | 
							
								4 23
							 | 
							elind | 
							⊢ ( 𝜑  →  𝑍  ∈  ( 𝑈  ∩  Rng ) )  | 
						
						
							| 25 | 
							
								24 6
							 | 
							eleqtrrd | 
							⊢ ( 𝜑  →  𝑍  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑍  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑟  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 28 | 
							
								2 5 19 20 26 27
							 | 
							rngchom | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  =  ( 𝑍  RngHom  𝑟 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑍  RngHom  𝑟 )  =  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eleq2d | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							biimpa | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  | 
						
						
							| 32 | 
							
								28
							 | 
							eleq2d | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  ↔  ℎ  ∈  ( 𝑍  RngHom  𝑟 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑟 )  | 
						
						
							| 34 | 
							
								13 33
							 | 
							rnghmf | 
							⊢ ( ℎ  ∈  ( 𝑍  RngHom  𝑟 )  →  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							biimtrdi | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  →  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							ffn | 
							⊢ ( ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 )  →  ℎ  Fn  ( Base ‘ 𝑍 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  →  ℎ  Fn  ( Base ‘ 𝑍 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							fvex | 
							⊢ ( 0g ‘ 𝑟 )  ∈  V  | 
						
						
							| 40 | 
							
								39 15
							 | 
							fnmpti | 
							⊢ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  Fn  ( Base ‘ 𝑍 )  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  Fn  ( Base ‘ 𝑍 ) )  | 
						
						
							| 42 | 
							
								32
							 | 
							biimpa | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  →  ℎ  ∈  ( 𝑍  RngHom  𝑟 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							rnghmghm | 
							⊢ ( ℎ  ∈  ( 𝑍  RngHom  𝑟 )  →  ℎ  ∈  ( 𝑍  GrpHom  𝑟 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑍 )  =  ( 0g ‘ 𝑍 )  | 
						
						
							| 45 | 
							
								44 14
							 | 
							ghmid | 
							⊢ ( ℎ  ∈  ( 𝑍  GrpHom  𝑟 )  →  ( ℎ ‘ ( 0g ‘ 𝑍 ) )  =  ( 0g ‘ 𝑟 ) )  | 
						
						
							| 46 | 
							
								42 43 45
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  →  ( ℎ ‘ ( 0g ‘ 𝑍 ) )  =  ( 0g ‘ 𝑟 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑍 ) )  →  ( ℎ ‘ ( 0g ‘ 𝑍 ) )  =  ( 0g ‘ 𝑟 ) )  | 
						
						
							| 48 | 
							
								13 44
							 | 
							0ringbas | 
							⊢ ( 𝑍  ∈  ( Ring  ∖  NzRing )  →  ( Base ‘ 𝑍 )  =  { ( 0g ‘ 𝑍 ) } )  | 
						
						
							| 49 | 
							
								3 48
							 | 
							syl | 
							⊢ ( 𝜑  →  ( Base ‘ 𝑍 )  =  { ( 0g ‘ 𝑍 ) } )  | 
						
						
							| 50 | 
							
								49
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑎  ∈  ( Base ‘ 𝑍 )  ↔  𝑎  ∈  { ( 0g ‘ 𝑍 ) } ) )  | 
						
						
							| 51 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑎  ∈  { ( 0g ‘ 𝑍 ) }  →  𝑎  =  ( 0g ‘ 𝑍 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							fveq2d | 
							⊢ ( 𝑎  ∈  { ( 0g ‘ 𝑍 ) }  →  ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ ( 0g ‘ 𝑍 ) ) )  | 
						
						
							| 53 | 
							
								50 52
							 | 
							biimtrdi | 
							⊢ ( 𝜑  →  ( 𝑎  ∈  ( Base ‘ 𝑍 )  →  ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑎  ∈  ( Base ‘ 𝑍 )  →  ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  →  ( 𝑎  ∈  ( Base ‘ 𝑍 )  →  ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑍 ) )  →  ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ ( 0g ‘ 𝑍 ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑎  ∈  ( Base ‘ 𝑍 )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑍 )  ∧  𝑥  =  𝑎 )  →  ( 0g ‘ 𝑟 )  =  ( 0g ‘ 𝑟 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							id | 
							⊢ ( 𝑎  ∈  ( Base ‘ 𝑍 )  →  𝑎  ∈  ( Base ‘ 𝑍 ) )  | 
						
						
							| 60 | 
							
								39
							 | 
							a1i | 
							⊢ ( 𝑎  ∈  ( Base ‘ 𝑍 )  →  ( 0g ‘ 𝑟 )  ∈  V )  | 
						
						
							| 61 | 
							
								57 58 59 60
							 | 
							fvmptd | 
							⊢ ( 𝑎  ∈  ( Base ‘ 𝑍 )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ‘ 𝑎 )  =  ( 0g ‘ 𝑟 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑍 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ‘ 𝑎 )  =  ( 0g ‘ 𝑟 ) )  | 
						
						
							| 63 | 
							
								47 56 62
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑍 ) )  →  ( ℎ ‘ 𝑎 )  =  ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ‘ 𝑎 ) )  | 
						
						
							| 64 | 
							
								38 41 63
							 | 
							eqfnfvd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  ∧  ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) )  | 
						
						
							| 65 | 
							
								36 64
							 | 
							mpdan | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  →  ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							alrimiv | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  →  ∀ ℎ ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ) )  | 
						
						
							| 69 | 
							
								18 31 68
							 | 
							3jca | 
							⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  ∧  ∀ ℎ ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ) ) )  | 
						
						
							| 70 | 
							
								17 69
							 | 
							mpdan | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  ∧  ∀ ℎ ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							eleq1 | 
							⊢ ( ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  →  ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							eqeu | 
							⊢ ( ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍  RngHom  𝑟 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  ∧  ∀ ℎ ( ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 0g ‘ 𝑟 ) ) ) )  →  ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  | 
						
						
							| 73 | 
							
								70 72
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) )  | 
						
						
							| 75 | 
							
								2
							 | 
							rngccat | 
							⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat )  | 
						
						
							| 76 | 
							
								1 75
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 77 | 
							
								5 20 76 25
							 | 
							isinito | 
							⊢ ( 𝜑  →  ( 𝑍  ∈  ( InitO ‘ 𝐶 )  ↔  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) )  | 
						
						
							| 78 | 
							
								74 77
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝑍  ∈  ( InitO ‘ 𝐶 ) )  |