| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrtermoringc.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 2 |  | zrtermoringc.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 3 |  | zrtermoringc.z | ⊢ ( 𝜑  →  𝑍  ∈  ( Ring  ∖  NzRing ) ) | 
						
							| 4 |  | zrtermoringc.e | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 5 |  | zrninitoringc.e | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ( Base ‘ 𝐶 ) 𝑟  ∈  NzRing ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 7 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  𝑈  ∈  𝑉 ) | 
						
							| 8 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 9 | 3 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  Ring ) | 
						
							| 10 | 4 9 | elind | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 11 | 2 6 1 | ringcbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 12 | 10 11 | eleqtrrd | ⊢ ( 𝜑  →  𝑍  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  𝑍  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  𝑟  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 15 | 2 6 7 8 13 14 | ringchom | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  =  ( 𝑍  RingHom  𝑟 ) ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑍  ∈  ( Ring  ∖  NzRing ) ) | 
						
							| 17 |  | nrhmzr | ⊢ ( ( 𝑍  ∈  ( Ring  ∖  NzRing )  ∧  𝑟  ∈  NzRing )  →  ( 𝑍  RingHom  𝑟 )  =  ∅ ) | 
						
							| 18 | 16 17 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  ( 𝑍  RingHom  𝑟 )  =  ∅ ) | 
						
							| 19 | 15 18 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  =  ∅ ) | 
						
							| 20 |  | eq0 | ⊢ ( ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  =  ∅  ↔  ∀ ℎ ¬  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  ∀ ℎ ¬  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 22 |  | alnex | ⊢ ( ∀ ℎ ¬  ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  ↔  ¬  ∃ ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 23 | 21 22 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  ¬  ∃ ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 24 |  | euex | ⊢ ( ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  →  ∃ ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 25 | 23 24 | nsyl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑟  ∈  NzRing )  →  ¬  ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑟  ∈  NzRing  →  ¬  ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) ) | 
						
							| 27 | 26 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  ( Base ‘ 𝐶 ) 𝑟  ∈  NzRing  →  ∃ 𝑟  ∈  ( Base ‘ 𝐶 ) ¬  ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) ) | 
						
							| 28 | 5 27 | mpd | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ( Base ‘ 𝐶 ) ¬  ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 29 |  | rexnal | ⊢ ( ∃ 𝑟  ∈  ( Base ‘ 𝐶 ) ¬  ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 )  ↔  ¬  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 30 | 28 29 | sylib | ⊢ ( 𝜑  →  ¬  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 31 |  | df-nel | ⊢ ( 𝑍  ∉  ( InitO ‘ 𝐶 )  ↔  ¬  𝑍  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 32 | 2 | ringccat | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) | 
						
							| 33 | 1 32 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 34 | 6 8 33 12 | isinito | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( InitO ‘ 𝐶 )  ↔  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) ) | 
						
							| 35 | 34 | notbid | ⊢ ( 𝜑  →  ( ¬  𝑍  ∈  ( InitO ‘ 𝐶 )  ↔  ¬  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) ) | 
						
							| 36 | 31 35 | bitrid | ⊢ ( 𝜑  →  ( 𝑍  ∉  ( InitO ‘ 𝐶 )  ↔  ¬  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑟 ) ) ) | 
						
							| 37 | 30 36 | mpbird | ⊢ ( 𝜑  →  𝑍  ∉  ( InitO ‘ 𝐶 ) ) |