| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrrnghm.b |
⊢ 𝐵 = ( Base ‘ 𝑇 ) |
| 2 |
|
zrrnghm.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 3 |
|
zrrnghm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
| 4 |
|
eldifi |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) |
| 5 |
|
ringrng |
⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Rng ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Rng ) |
| 7 |
6
|
anim1i |
⊢ ( ( 𝑇 ∈ ( Ring ∖ NzRing ) ∧ 𝑆 ∈ Rng ) → ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
| 9 |
|
rngabl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Abel ) |
| 10 |
|
ablgrp |
⊢ ( 𝑆 ∈ Abel → 𝑆 ∈ Grp ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Grp ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝑆 ∈ Grp ) |
| 13 |
|
ringgrp |
⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) |
| 14 |
4 13
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝑇 ∈ Grp ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
| 17 |
1 16
|
0ringbas |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝐵 = { ( 0g ‘ 𝑇 ) } ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐵 = { ( 0g ‘ 𝑇 ) } ) |
| 19 |
1 2 3 16
|
c0snghm |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
| 20 |
12 15 18 19
|
syl3anc |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
| 21 |
3
|
a1i |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
| 22 |
|
eqidd |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ 𝑥 = ( 0g ‘ 𝑇 ) ) → 0 = 0 ) |
| 23 |
1 16
|
ring0cl |
⊢ ( 𝑇 ∈ Ring → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
| 24 |
4 23
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
| 25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
| 26 |
2
|
fvexi |
⊢ 0 ∈ V |
| 27 |
26
|
a1i |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 0 ∈ V ) |
| 28 |
21 22 25 27
|
fvmptd |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 30 |
29 2
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 31 |
11 30
|
syl |
⊢ ( 𝑆 ∈ Rng → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 32 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 33 |
29 32 2
|
rnglz |
⊢ ( ( 𝑆 ∈ Rng ∧ 0 ∈ ( Base ‘ 𝑆 ) ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 34 |
31 33
|
mpdan |
⊢ ( 𝑆 ∈ Rng → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 38 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 39 |
38 38
|
oveq12d |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) = ( 0 ( .r ‘ 𝑆 ) 0 ) ) |
| 40 |
|
eqid |
⊢ ( .r ‘ 𝑇 ) = ( .r ‘ 𝑇 ) |
| 41 |
1 40 16
|
ringlz |
⊢ ( ( 𝑇 ∈ Ring ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 42 |
4 23 41
|
syl2anc2 |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 43 |
42
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 45 |
44
|
fveq2d |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 46 |
45 38
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = 0 ) |
| 47 |
37 39 46
|
3eqtr4rd |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
| 48 |
28 47
|
mpdan |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
| 49 |
23 23
|
jca |
⊢ ( 𝑇 ∈ Ring → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 50 |
4 49
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 51 |
50
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 52 |
|
fvoveq1 |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 54 |
53
|
oveq1d |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 55 |
52 54
|
eqeq12d |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 56 |
|
oveq2 |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) = ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
| 60 |
57 59
|
eqeq12d |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
| 61 |
55 60
|
2ralsng |
⊢ ( ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) → ( ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
| 62 |
51 61
|
syl |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
| 63 |
48 62
|
mpbird |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 64 |
|
raleq |
⊢ ( 𝐵 = { ( 0g ‘ 𝑇 ) } → ( ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 65 |
64
|
raleqbi1dv |
⊢ ( 𝐵 = { ( 0g ‘ 𝑇 ) } → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 66 |
65
|
adantl |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 67 |
63 66
|
mpbird |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 68 |
18 67
|
mpdan |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 69 |
20 68
|
jca |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 70 |
1 40 32
|
isrnghm |
⊢ ( 𝐻 ∈ ( 𝑇 RngHom 𝑆 ) ↔ ( ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 71 |
8 69 70
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑇 RngHom 𝑆 ) ) |