| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrtermoringc.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 2 |  | zrtermoringc.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 3 |  | zrtermoringc.z | ⊢ ( 𝜑  →  𝑍  ∈  ( Ring  ∖  NzRing ) ) | 
						
							| 4 |  | zrtermoringc.e | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 6 | 2 5 1 | ringcbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝜑  →  ( 𝑟  ∈  ( Base ‘ 𝐶 )  ↔  𝑟  ∈  ( 𝑈  ∩  Ring ) ) ) | 
						
							| 8 |  | elin | ⊢ ( 𝑟  ∈  ( 𝑈  ∩  Ring )  ↔  ( 𝑟  ∈  𝑈  ∧  𝑟  ∈  Ring ) ) | 
						
							| 9 | 8 | simprbi | ⊢ ( 𝑟  ∈  ( 𝑈  ∩  Ring )  →  𝑟  ∈  Ring ) | 
						
							| 10 | 7 9 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑟  ∈  ( Base ‘ 𝐶 )  →  𝑟  ∈  Ring ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑟  ∈  Ring ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑍  ∈  ( Ring  ∖  NzRing ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑟 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝑍 )  =  ( 0g ‘ 𝑍 ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) | 
						
							| 16 | 13 14 15 | c0rhm | ⊢ ( ( 𝑟  ∈  Ring  ∧  𝑍  ∈  ( Ring  ∖  NzRing ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) ) | 
						
							| 17 | 11 12 16 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) ) | 
						
							| 19 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑈  ∈  𝑉 ) | 
						
							| 20 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑟  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 22 | 3 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  Ring ) | 
						
							| 23 | 4 22 | elind | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 24 | 23 6 | eleqtrrd | ⊢ ( 𝜑  →  𝑍  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑍  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 26 | 2 5 19 20 21 25 | ringchom | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  =  ( 𝑟  RingHom  𝑍 ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑟  RingHom  𝑍 )  =  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) | 
						
							| 28 | 27 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) ) | 
						
							| 29 | 28 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) | 
						
							| 30 | 26 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  ↔  ℎ  ∈  ( 𝑟  RingHom  𝑍 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 32 | 13 31 | rhmf | ⊢ ( ℎ  ∈  ( 𝑟  RingHom  𝑍 )  →  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) | 
						
							| 33 | 30 32 | biimtrdi | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  →  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  →  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) | 
						
							| 35 |  | ffn | ⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 )  →  ℎ  Fn  ( Base ‘ 𝑟 ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  ∧  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) )  →  ℎ  Fn  ( Base ‘ 𝑟 ) ) | 
						
							| 37 |  | fvex | ⊢ ( 0g ‘ 𝑍 )  ∈  V | 
						
							| 38 | 37 15 | fnmpti | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  Fn  ( Base ‘ 𝑟 ) | 
						
							| 39 | 38 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  ∧  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  Fn  ( Base ‘ 𝑟 ) ) | 
						
							| 40 | 31 14 | 0ringbas | ⊢ ( 𝑍  ∈  ( Ring  ∖  NzRing )  →  ( Base ‘ 𝑍 )  =  { ( 0g ‘ 𝑍 ) } ) | 
						
							| 41 | 3 40 | syl | ⊢ ( 𝜑  →  ( Base ‘ 𝑍 )  =  { ( 0g ‘ 𝑍 ) } ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( Base ‘ 𝑍 )  =  { ( 0g ‘ 𝑍 ) } ) | 
						
							| 43 | 42 | feq3d | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 )  ↔  ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } ) ) | 
						
							| 44 |  | fvconst | ⊢ ( ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) }  ∧  𝑎  ∈  ( Base ‘ 𝑟 ) )  →  ( ℎ ‘ 𝑎 )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 45 | 44 | ex | ⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) }  →  ( 𝑎  ∈  ( Base ‘ 𝑟 )  →  ( ℎ ‘ 𝑎 )  =  ( 0g ‘ 𝑍 ) ) ) | 
						
							| 46 | 43 45 | biimtrdi | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 )  →  ( 𝑎  ∈  ( Base ‘ 𝑟 )  →  ( ℎ ‘ 𝑎 )  =  ( 0g ‘ 𝑍 ) ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 )  →  ( 𝑎  ∈  ( Base ‘ 𝑟 )  →  ( ℎ ‘ 𝑎 )  =  ( 0g ‘ 𝑍 ) ) ) ) | 
						
							| 48 | 47 | imp31 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  ∧  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑟 ) )  →  ( ℎ ‘ 𝑎 )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 49 |  | eqidd | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑟 )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) | 
						
							| 50 |  | eqidd | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑟 )  ∧  𝑥  =  𝑎 )  →  ( 0g ‘ 𝑍 )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 51 |  | id | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑟 )  →  𝑎  ∈  ( Base ‘ 𝑟 ) ) | 
						
							| 52 | 37 | a1i | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑟 )  →  ( 0g ‘ 𝑍 )  ∈  V ) | 
						
							| 53 | 49 50 51 52 | fvmptd | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑟 )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ‘ 𝑎 )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  ∧  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑟 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ‘ 𝑎 )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 55 | 48 54 | eqtr4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  ∧  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑟 ) )  →  ( ℎ ‘ 𝑎 )  =  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) ) | 
						
							| 56 | 36 39 55 | eqfnfvd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  ∧  ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) | 
						
							| 57 | 56 | ex | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) ) | 
						
							| 58 | 34 57 | syld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) ) | 
						
							| 59 | 58 | alrimiv | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ∀ ℎ ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) ) | 
						
							| 60 | 18 29 59 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  ∧  ∀ ℎ ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) ) ) | 
						
							| 61 | 17 60 | mpdan | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  ∧  ∀ ℎ ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) ) ) | 
						
							| 62 |  | eleq1 | ⊢ ( ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  →  ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) ) | 
						
							| 63 | 62 | eqeu | ⊢ ( ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟  RingHom  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) )  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  ∧  ∀ ℎ ( ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 )  →  ℎ  =  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  ( 0g ‘ 𝑍 ) ) ) )  →  ∃! ℎ ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) | 
						
							| 64 | 61 63 | syl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ∃! ℎ ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) | 
						
							| 65 | 64 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) | 
						
							| 66 | 2 | ringccat | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) | 
						
							| 67 | 1 66 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 68 | 5 20 67 24 | istermo | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  ↔  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! ℎ ℎ  ∈  ( 𝑟 ( Hom  ‘ 𝐶 ) 𝑍 ) ) ) | 
						
							| 69 | 65 68 | mpbird | ⊢ ( 𝜑  →  𝑍  ∈  ( TermO ‘ 𝐶 ) ) |