| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
| 2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 3 |
|
cnfldmulg |
⊢ ( ( 𝑥 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) |
| 4 |
1 2 3
|
sylancl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) |
| 5 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℂ ) |
| 7 |
6
|
mulridd |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 8 |
4 7
|
eqtrd |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = 𝑥 ) |
| 9 |
|
subrgsubg |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 ∈ ( SubGrp ‘ ℂfld ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑅 ∈ ( SubGrp ‘ ℂfld ) ) |
| 11 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 12 |
11
|
subrg1cl |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 1 ∈ 𝑅 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 1 ∈ 𝑅 ) |
| 14 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
| 15 |
14
|
subgmulgcl |
⊢ ( ( 𝑅 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ 𝑅 ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) ∈ 𝑅 ) |
| 16 |
10 1 13 15
|
syl3anc |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) ∈ 𝑅 ) |
| 17 |
8 16
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ 𝑅 ) |
| 18 |
17
|
ex |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ( 𝑥 ∈ ℤ → 𝑥 ∈ 𝑅 ) ) |
| 19 |
18
|
ssrdv |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 ) |