Metamath Proof Explorer


Theorem zsssubrg

Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion zsssubrg ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ )
2 ax-1cn 1 ∈ ℂ
3 cnfldmulg ( ( 𝑥 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) )
4 1 2 3 sylancl ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) )
5 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
6 5 adantl ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℂ )
7 6 mulid1d ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 1 ) = 𝑥 )
8 4 7 eqtrd ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = 𝑥 )
9 subrgsubg ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 ∈ ( SubGrp ‘ ℂfld ) )
10 9 adantr ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑅 ∈ ( SubGrp ‘ ℂfld ) )
11 cnfld1 1 = ( 1r ‘ ℂfld )
12 11 subrg1cl ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 1 ∈ 𝑅 )
13 12 adantr ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 1 ∈ 𝑅 )
14 eqid ( .g ‘ ℂfld ) = ( .g ‘ ℂfld )
15 14 subgmulgcl ( ( 𝑅 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ 𝑅 ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) ∈ 𝑅 )
16 10 1 13 15 syl3anc ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) ∈ 𝑅 )
17 8 16 eqeltrrd ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥𝑅 )
18 17 ex ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ( 𝑥 ∈ ℤ → 𝑥𝑅 ) )
19 18 ssrdv ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 )