Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zsubcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 2 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 3 | negsub | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) |
| 5 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 6 | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) ∈ ℤ ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) ∈ ℤ ) |
| 8 | 4 7 | eqeltrrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |