Metamath Proof Explorer
Description: The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)
|
|
Ref |
Expression |
|
Assertion |
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
2 |
|
zaddcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
3 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
4 |
|
1z |
⊢ 1 ∈ ℤ |
5 |
|
zmulcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
6 |
1 2 3 4 5
|
cnsubrglem |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |