| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑦 = 𝑚 → ( 𝑦 ≤ 𝑥 ↔ 𝑚 ≤ 𝑥 ) ) |
| 2 |
1
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ) |
| 3 |
|
breq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑚 ≤ 𝑥 ↔ 𝑚 ≤ 𝑛 ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) |
| 5 |
2 4
|
bitrid |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) |
| 6 |
5
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃ 𝑛 ∈ ℤ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) |
| 7 |
|
simp1rl |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) |
| 8 |
7
|
znegcld |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑛 ∈ ℤ ) |
| 9 |
|
simp2 |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) |
| 10 |
9
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
| 11 |
7
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
| 12 |
|
breq1 |
⊢ ( 𝑚 = - 𝑤 → ( 𝑚 ≤ 𝑛 ↔ - 𝑤 ≤ 𝑛 ) ) |
| 13 |
|
simp1rr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) |
| 14 |
|
simp3 |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ∈ 𝐴 ) |
| 15 |
12 13 14
|
rspcdva |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ≤ 𝑛 ) |
| 16 |
10 11 15
|
lenegcon1d |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑛 ≤ 𝑤 ) |
| 17 |
|
eluz2 |
⊢ ( 𝑤 ∈ ( ℤ≥ ‘ - 𝑛 ) ↔ ( - 𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ - 𝑛 ≤ 𝑤 ) ) |
| 18 |
8 9 16 17
|
syl3anbrc |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ( ℤ≥ ‘ - 𝑛 ) ) |
| 19 |
18
|
rabssdv |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 20 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ 𝐴 ) |
| 21 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) |
| 22 |
21
|
znegcld |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - 𝑛 ∈ ℤ ) |
| 23 |
21
|
zcnd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℂ ) |
| 24 |
23
|
negnegd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - - 𝑛 = 𝑛 ) |
| 25 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ 𝐴 ) |
| 26 |
24 25
|
eqeltrd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - - 𝑛 ∈ 𝐴 ) |
| 27 |
|
negeq |
⊢ ( 𝑤 = - 𝑛 → - 𝑤 = - - 𝑛 ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑤 = - 𝑛 → ( - 𝑤 ∈ 𝐴 ↔ - - 𝑛 ∈ 𝐴 ) ) |
| 29 |
28
|
rspcev |
⊢ ( ( - 𝑛 ∈ ℤ ∧ - - 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 30 |
22 26 29
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 31 |
30
|
ex |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑛 ∈ 𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) ) |
| 32 |
31
|
exlimdv |
⊢ ( 𝐴 ⊆ ℤ → ( ∃ 𝑛 𝑛 ∈ 𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) ) |
| 33 |
32
|
imp |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 34 |
20 33
|
sylan2b |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 36 |
|
rabn0 |
⊢ ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
| 37 |
35 36
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ) |
| 38 |
|
infssuzcl |
⊢ ( ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
| 39 |
19 37 38
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
| 40 |
|
negeq |
⊢ ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → - 𝑛 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) |
| 41 |
40
|
eleq1d |
⊢ ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( - 𝑛 ∈ 𝐴 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) ) |
| 42 |
|
negeq |
⊢ ( 𝑤 = 𝑛 → - 𝑤 = - 𝑛 ) |
| 43 |
42
|
eleq1d |
⊢ ( 𝑤 = 𝑛 → ( - 𝑤 ∈ 𝐴 ↔ - 𝑛 ∈ 𝐴 ) ) |
| 44 |
43
|
cbvrabv |
⊢ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } = { 𝑛 ∈ ℤ ∣ - 𝑛 ∈ 𝐴 } |
| 45 |
41 44
|
elrab2 |
⊢ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ↔ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ∧ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) ) |
| 46 |
45
|
simprbi |
⊢ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) |
| 47 |
39 46
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) |
| 48 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → 𝐴 ⊆ ℤ ) |
| 49 |
48
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℤ ) |
| 50 |
49
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 51 |
|
ssrab2 |
⊢ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ℤ |
| 52 |
39
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
| 53 |
51 52
|
sselid |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ) |
| 54 |
53
|
znegcld |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ) |
| 55 |
54
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 56 |
53
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 57 |
19
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 58 |
|
negeq |
⊢ ( 𝑤 = - 𝑦 → - 𝑤 = - - 𝑦 ) |
| 59 |
58
|
eleq1d |
⊢ ( 𝑤 = - 𝑦 → ( - 𝑤 ∈ 𝐴 ↔ - - 𝑦 ∈ 𝐴 ) ) |
| 60 |
49
|
znegcld |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ ℤ ) |
| 61 |
49
|
zcnd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℂ ) |
| 62 |
61
|
negnegd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - - 𝑦 = 𝑦 ) |
| 63 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 64 |
62 63
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - - 𝑦 ∈ 𝐴 ) |
| 65 |
59 60 64
|
elrabd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
| 66 |
|
infssuzle |
⊢ ( ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ≤ - 𝑦 ) |
| 67 |
57 65 66
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ≤ - 𝑦 ) |
| 68 |
56 50 67
|
lenegcon2d |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ≤ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) |
| 69 |
50 55 68
|
lensymd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) |
| 70 |
69
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) |
| 71 |
|
breq2 |
⊢ ( 𝑧 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑦 < 𝑧 ↔ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) ) |
| 72 |
71
|
rspcev |
⊢ ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ∧ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
| 73 |
72
|
ex |
⊢ ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 74 |
47 73
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 75 |
74
|
ralrimivw |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 76 |
|
breq1 |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 < 𝑦 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
| 77 |
76
|
notbid |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ¬ 𝑥 < 𝑦 ↔ ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
| 78 |
77
|
ralbidv |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
| 79 |
|
breq2 |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑦 < 𝑥 ↔ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) ) |
| 80 |
79
|
imbi1d |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 81 |
80
|
ralbidv |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 82 |
78 81
|
anbi12d |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 83 |
82
|
rspcev |
⊢ ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 84 |
47 70 75 83
|
syl12anc |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 85 |
84
|
rexlimdvaa |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑛 ∈ ℤ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 86 |
6 85
|
biimtrid |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 87 |
86
|
3impia |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |