Metamath Proof Explorer


Theorem zxrd

Description: An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis zxrd.1 ( 𝜑𝐴 ∈ ℤ )
Assertion zxrd ( 𝜑𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 zxrd.1 ( 𝜑𝐴 ∈ ℤ )
2 1 zred ( 𝜑𝐴 ∈ ℝ )
3 2 rexrd ( 𝜑𝐴 ∈ ℝ* )