| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 2 |  | animorrl | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ∈  ℕ  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 3 |  | olc | ⊢ ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝑁  ∈  ℕ  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 4 | 2 3 | jaodan | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ0 ) )  →  ( 𝑁  ∈  ℕ  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 5 | 1 4 | sylbi | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  ∈  ℕ  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 6 |  | nnlesq | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( 𝑁 ↑ 2 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 8 |  | 0red | ⊢ ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 9 | 7 | resqcld | ⊢ ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝑁 ↑ 2 )  ∈  ℝ ) | 
						
							| 10 |  | nn0ge0 | ⊢ ( - 𝑁  ∈  ℕ0  →  0  ≤  - 𝑁 ) | 
						
							| 11 |  | le0neg1 | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  ≤  0  ↔  0  ≤  - 𝑁 ) ) | 
						
							| 12 | 11 | biimpar | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  ≤  - 𝑁 )  →  𝑁  ≤  0 ) | 
						
							| 13 | 10 12 | sylan2 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 )  →  𝑁  ≤  0 ) | 
						
							| 14 | 7 | sqge0d | ⊢ ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 )  →  0  ≤  ( 𝑁 ↑ 2 ) ) | 
						
							| 15 | 7 8 9 13 14 | letrd | ⊢ ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 )  →  𝑁  ≤  ( 𝑁 ↑ 2 ) ) | 
						
							| 16 | 6 15 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ0 ) )  →  𝑁  ≤  ( 𝑁 ↑ 2 ) ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ≤  ( 𝑁 ↑ 2 ) ) |