Step |
Hyp |
Ref |
Expression |
1 |
|
zzngim.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 0 ) |
2 |
|
zzngim.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
1
|
zncrng |
⊢ ( 0 ∈ ℕ0 → 𝑌 ∈ CRing ) |
5 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
6 |
3 4 5
|
mp2b |
⊢ 𝑌 ∈ Ring |
7 |
2
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
8 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
9 |
6 7 8
|
mp2b |
⊢ 𝐿 ∈ ( ℤring GrpHom 𝑌 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
11 |
1 10 2
|
znzrhfo |
⊢ ( 0 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
12 |
3 11
|
ax-mp |
⊢ 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) |
13 |
|
fofn |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 Fn ℤ ) |
14 |
|
fnresdm |
⊢ ( 𝐿 Fn ℤ → ( 𝐿 ↾ ℤ ) = 𝐿 ) |
15 |
12 13 14
|
mp2b |
⊢ ( 𝐿 ↾ ℤ ) = 𝐿 |
16 |
2
|
reseq1i |
⊢ ( 𝐿 ↾ ℤ ) = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ ) |
17 |
15 16
|
eqtr3i |
⊢ 𝐿 = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ ) |
18 |
|
eqid |
⊢ 0 = 0 |
19 |
18
|
iftruei |
⊢ if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) ) = ℤ |
20 |
19
|
eqcomi |
⊢ ℤ = if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) ) |
21 |
1 10 17 20
|
znf1o |
⊢ ( 0 ∈ ℕ0 → 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) ) |
22 |
3 21
|
ax-mp |
⊢ 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) |
23 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
24 |
23 10
|
isgim |
⊢ ( 𝐿 ∈ ( ℤring GrpIso 𝑌 ) ↔ ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) ) ) |
25 |
9 22 24
|
mpbir2an |
⊢ 𝐿 ∈ ( ℤring GrpIso 𝑌 ) |