Metamath Proof Explorer


Theorem zzngim

Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses zzngim.y 𝑌 = ( ℤ/nℤ ‘ 0 )
zzngim.2 𝐿 = ( ℤRHom ‘ 𝑌 )
Assertion zzngim 𝐿 ∈ ( ℤring GrpIso 𝑌 )

Proof

Step Hyp Ref Expression
1 zzngim.y 𝑌 = ( ℤ/nℤ ‘ 0 )
2 zzngim.2 𝐿 = ( ℤRHom ‘ 𝑌 )
3 0nn0 0 ∈ ℕ0
4 1 zncrng ( 0 ∈ ℕ0𝑌 ∈ CRing )
5 crngring ( 𝑌 ∈ CRing → 𝑌 ∈ Ring )
6 3 4 5 mp2b 𝑌 ∈ Ring
7 2 zrhrhm ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) )
8 rhmghm ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) )
9 6 7 8 mp2b 𝐿 ∈ ( ℤring GrpHom 𝑌 )
10 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
11 1 10 2 znzrhfo ( 0 ∈ ℕ0𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) )
12 3 11 ax-mp 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 )
13 fofn ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 Fn ℤ )
14 fnresdm ( 𝐿 Fn ℤ → ( 𝐿 ↾ ℤ ) = 𝐿 )
15 12 13 14 mp2b ( 𝐿 ↾ ℤ ) = 𝐿
16 2 reseq1i ( 𝐿 ↾ ℤ ) = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ )
17 15 16 eqtr3i 𝐿 = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ )
18 eqid 0 = 0
19 18 iftruei if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) ) = ℤ
20 19 eqcomi ℤ = if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) )
21 1 10 17 20 znf1o ( 0 ∈ ℕ0𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) )
22 3 21 ax-mp 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 )
23 zringbas ℤ = ( Base ‘ ℤring )
24 23 10 isgim ( 𝐿 ∈ ( ℤring GrpIso 𝑌 ) ↔ ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) ) )
25 9 22 24 mpbir2an 𝐿 ∈ ( ℤring GrpIso 𝑌 )