| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zzngim.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 0 ) |
| 2 |
|
zzngim.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
| 3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 4 |
1
|
zncrng |
⊢ ( 0 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 5 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
| 6 |
3 4 5
|
mp2b |
⊢ 𝑌 ∈ Ring |
| 7 |
2
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
| 8 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
| 9 |
6 7 8
|
mp2b |
⊢ 𝐿 ∈ ( ℤring GrpHom 𝑌 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 11 |
1 10 2
|
znzrhfo |
⊢ ( 0 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 12 |
3 11
|
ax-mp |
⊢ 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) |
| 13 |
|
fofn |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 Fn ℤ ) |
| 14 |
|
fnresdm |
⊢ ( 𝐿 Fn ℤ → ( 𝐿 ↾ ℤ ) = 𝐿 ) |
| 15 |
12 13 14
|
mp2b |
⊢ ( 𝐿 ↾ ℤ ) = 𝐿 |
| 16 |
2
|
reseq1i |
⊢ ( 𝐿 ↾ ℤ ) = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ ) |
| 17 |
15 16
|
eqtr3i |
⊢ 𝐿 = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ ) |
| 18 |
|
eqid |
⊢ 0 = 0 |
| 19 |
18
|
iftruei |
⊢ if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) ) = ℤ |
| 20 |
19
|
eqcomi |
⊢ ℤ = if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) ) |
| 21 |
1 10 17 20
|
znf1o |
⊢ ( 0 ∈ ℕ0 → 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) ) |
| 22 |
3 21
|
ax-mp |
⊢ 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) |
| 23 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 24 |
23 10
|
isgim |
⊢ ( 𝐿 ∈ ( ℤring GrpIso 𝑌 ) ↔ ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) ) ) |
| 25 |
9 22 24
|
mpbir2an |
⊢ 𝐿 ∈ ( ℤring GrpIso 𝑌 ) |