Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iffalsei Unicode version

Theorem iffalsei 3951
 Description: Inference associated with iffalse 3950. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iffalsei.1
Assertion
Ref Expression
iffalsei

Proof of Theorem iffalsei
StepHypRef Expression
1 iffalsei.1 . 2
2 iffalse 3950 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  =wceq 1395  ifcif 3941 This theorem is referenced by:  sum0  13543  prod0  13750  itg0  22186  vieta1lem2  22707  dfrdg2  29228  dfrdg4  29600  refsum2cnlem1  31412  iblempty  31764  fouriersw  32014  bj-pr21val  34571  bj-pr22val  34577 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-if 3942
 Copyright terms: Public domain W3C validator