MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inegd Unicode version

Theorem inegd 1416
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1
Assertion
Ref Expression
inegd

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3
21ex 434 . 2
3 dfnot 1414 . 2
42, 3sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369   wfal 1400
This theorem is referenced by:  efald  1417  tglndim0  24009  archiabllem2c  27739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator