Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0inp0 | |- ( A = (/) -> -. A = { (/) } ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nep0 |  |-  (/) =/= { (/) } | 
						|
| 2 | neeq1 |  |-  ( A = (/) -> ( A =/= { (/) } <-> (/) =/= { (/) } ) ) | 
						|
| 3 | 1 2 | mpbiri |  |-  ( A = (/) -> A =/= { (/) } ) | 
						
| 4 | 3 | neneqd |  |-  ( A = (/) -> -. A = { (/) } ) |