Metamath Proof Explorer


Theorem 0wlkonlem2

Description: Lemma 2 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypothesis 0wlk.v
|- V = ( Vtx ` G )
Assertion 0wlkonlem2
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) )

Proof

Step Hyp Ref Expression
1 0wlk.v
 |-  V = ( Vtx ` G )
2 ovex
 |-  ( 0 ... 0 ) e. _V
3 1 fvexi
 |-  V e. _V
4 simpl
 |-  ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P : ( 0 ... 0 ) --> V )
5 fpmg
 |-  ( ( ( 0 ... 0 ) e. _V /\ V e. _V /\ P : ( 0 ... 0 ) --> V ) -> P e. ( V ^pm ( 0 ... 0 ) ) )
6 2 3 4 5 mp3an12i
 |-  ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) )