Description: Lemma 2 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 0wlk.v | |- V = ( Vtx ` G ) |
|
Assertion | 0wlkonlem2 | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0wlk.v | |- V = ( Vtx ` G ) |
|
2 | ovex | |- ( 0 ... 0 ) e. _V |
|
3 | 1 | fvexi | |- V e. _V |
4 | simpl | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P : ( 0 ... 0 ) --> V ) |
|
5 | fpmg | |- ( ( ( 0 ... 0 ) e. _V /\ V e. _V /\ P : ( 0 ... 0 ) --> V ) -> P e. ( V ^pm ( 0 ... 0 ) ) ) |
|
6 | 2 3 4 5 | mp3an12i | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) ) |