Metamath Proof Explorer


Theorem 19.41v

Description: Version of 19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993) Remove dependency on ax-6 . (Revised by Rohan Ridenour, 15-Apr-2022)

Ref Expression
Assertion 19.41v
|- ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 19.40
 |-  ( E. x ( ph /\ ps ) -> ( E. x ph /\ E. x ps ) )
2 ax5e
 |-  ( E. x ps -> ps )
3 2 anim2i
 |-  ( ( E. x ph /\ E. x ps ) -> ( E. x ph /\ ps ) )
4 1 3 syl
 |-  ( E. x ( ph /\ ps ) -> ( E. x ph /\ ps ) )
5 pm3.21
 |-  ( ps -> ( ph -> ( ph /\ ps ) ) )
6 5 eximdv
 |-  ( ps -> ( E. x ph -> E. x ( ph /\ ps ) ) )
7 6 impcom
 |-  ( ( E. x ph /\ ps ) -> E. x ( ph /\ ps ) )
8 4 7 impbii
 |-  ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) )