Description: Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2cprodeq2dv.1 | |- ( ( ph /\ j e. A /\ k e. B ) -> C = D ) |
|
| Assertion | 2cprodeq2dv | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ j e. A prod_ k e. B D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cprodeq2dv.1 | |- ( ( ph /\ j e. A /\ k e. B ) -> C = D ) |
|
| 2 | 1 | 3expa | |- ( ( ( ph /\ j e. A ) /\ k e. B ) -> C = D ) |
| 3 | 2 | prodeq2dv | |- ( ( ph /\ j e. A ) -> prod_ k e. B C = prod_ k e. B D ) |
| 4 | 3 | prodeq2dv | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ j e. A prod_ k e. B D ) |