Metamath Proof Explorer


Theorem 2ralimi

Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021)

Ref Expression
Hypothesis ralimi.1
|- ( ph -> ps )
Assertion 2ralimi
|- ( A. x e. A A. y e. B ph -> A. x e. A A. y e. B ps )

Proof

Step Hyp Ref Expression
1 ralimi.1
 |-  ( ph -> ps )
2 1 ralimi
 |-  ( A. y e. B ph -> A. y e. B ps )
3 2 ralimi
 |-  ( A. x e. A A. y e. B ph -> A. x e. A A. y e. B ps )