Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbbii.1 | |- ( ph <-> ps ) |
|
Assertion | 2sbbii | |- ( [ t / x ] [ u / y ] ph <-> [ t / x ] [ u / y ] ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | |- ( ph <-> ps ) |
|
2 | 1 | sbbii | |- ( [ u / y ] ph <-> [ u / y ] ps ) |
3 | 2 | sbbii | |- ( [ t / x ] [ u / y ] ph <-> [ t / x ] [ u / y ] ps ) |