Metamath Proof Explorer


Theorem 3ad2antr2

Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007)

Ref Expression
Hypothesis 3ad2antl.1
|- ( ( ph /\ ch ) -> th )
Assertion 3ad2antr2
|- ( ( ph /\ ( ps /\ ch /\ ta ) ) -> th )

Proof

Step Hyp Ref Expression
1 3ad2antl.1
 |-  ( ( ph /\ ch ) -> th )
2 1 adantrl
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
3 2 3adantr3
 |-  ( ( ph /\ ( ps /\ ch /\ ta ) ) -> th )