Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3anassrs.1 | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )  | 
					|
| Assertion | 3anassrs | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anassrs.1 | |- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )  | 
						|
| 2 | 1 | 3exp2 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )  | 
						
| 3 | 2 | imp41 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )  |